

Intel® PROSet
for Windows* Device Manager

WMI Provider User's Guide

Page 2 of 75

Legal Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control
or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Intel®, Intel® PRO Network Connections, and Intel® PROSet are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation

Page 3 of 75

Table of Contents
Legal Notices and Disclaimers ... 3
Table of Contents.. 4
1 Introduction .. 8

1.1 Scope... 8
1.2 Related Documents ... 8

2 WMI ... 9
2.1 Common Information Model (CIM Schema) ... 10

3 Main Features... 12
3.1 Adapter.. 12
3.2 Team ... 12
3.3 VLAN ... 12
3.4 Diagnostics.. 12

4 Installed Files ... 13
4.1 Executables ... 13
4.2 MOF Files ... 13
4.3 MOF Files for IntelNCS2 Namespace.. 13

5 Security... 14
6 Namespace and Context ... 15

6.1 Namespace .. 15
6.2 WBEM Context .. 15

7 Locales and Localization.. 16
7.1 Localized MOF files ... 16
7.2 Class Storage... 16
7.3 Runtime Support ... 16

8 Error Reporting .. 17
8.1 IANet_ExtendedStatus.. 17
8.2 Getting the Error Object.. 17
8.3 Error Object Qualifiers ... 17
8.4 Error Codes ... 17

9 The Core Schema ... 19
9.1 Core Schema Diagram .. 19
9.2 IANet_NetService... 19

10 Ethernet Adapter Schema ... 21
10.1 Adapter Schema Diagram... 21
10.2 IANet_PhysicalEthernetAdapter... 22
10.3 IANet_BootAgent ... 24

11 Adapter Setting Schema.. 26
11.1 Adapter Setting Schema Diagram... 26

Page 4 of 75

11.2 IANet_AdapterToSettingAssoc .. 26
11.3 IANet_AdapterSetting .. 27
11.4 IANet_AdapterSettingInt.. 27
11.5 IANet_AdapterSettingEnum... 28
11.6 IANet_AdapterSettingSlider... 29
11.7 IANet_AdapterSettingMultiSelection... 30
11.8 IANet_AdapterSettingString... 31

12 Boot Agent Setting Schema.. 33
12.1 Boot Agent Setting Schema Diagram... 33
12.2 IANet_BootAgentToBootAgentSettingAssoc.. 33
12.3 IANet_BootAgentSetting.. 34
12.4 IANet_BootAgentSettingEnum .. 34

13 Team Schema.. 36
13.1 Team Schema Diagram... 36
13.2 IANet_TeamOfAdapters... 36
13.3 IANet_TeamedMemberAdapter ... 39
13.4 IANet_NetworkVirtualAdapter .. 39

14 Team Setting Schema ... 41
14.1 Team Setting Schema Diagram .. 41
14.2 IANet_TeamToTeamSettingAssoc... 41
14.3 IANet_TeamSetting .. 42
14.4 IANet_TeamSettingInt.. 42
14.5 IANet_TeamSettingEnum... 43
14.6 IANet_TeamSettingSlider... 44
14.7 IANet_TeamSettingMultiSelection .. 45
14.8 IANet_TeamSettingString .. 46

15 VLAN Schema.. 48
15.1 VLAN Schema Diagram... 48
15.2 IANet_802dot1QVLANService ... 48
15.3 IANet_VLAN ... 49

16 VLAN Setting Schema ... 50
16.1 VLAN Setting Schema Diagram .. 50
16.2 IANet_VLANToVLANSettingAssoc... 50
16.3 IANet_VLANSetting .. 51
16.4 IANet_VLANSettingInt.. 51
16.5 IANet_VLANSettingEnum... 52
16.6 IANet_VLANSettingSlider... 53
16.7 IANet_VLANSettingMultiSelection .. 54
16.8 IANet_VLANSettingString .. 55

17 Diagnostic Classes .. 57

Page 5 of 75

17.1 Diagnostic Test Schema.. 57
17.2 IANet_DiagTest.. 57
17.3 IANet_DiagSetting ... 59
17.4 IANet_DiagResult... 59

18 Getting the Current Configuration .. 61
18.1 Getting the Physical Adapters... 61
18.2 Getting the Team Configuration ... 61
18.3 Getting the VLAN configuration .. 62
18.4 Getting the Boot Agent Information ... 62

19 Updating the configuration ... 63
19.1 Changing the adapter, team or VLAN settings... 63
19.2 Creating a new team.. 63
19.3 Adding an adapter to a team ... 63
19.4 Removing an adapter from a team.. 64
19.5 Deleting a team ... 64
19.6 Changing the mode of a team ... 64
19.7 Changing an adapter’s priority within a team... 64
19.8 Uninstalling an adapter ... 64
19.9 Creating a VLAN.. 64
19.10 Changing the Properties of a VLAN... 65
19.11 Deleting a VLAN.. 65
19.12 Updating the Boot Agent .. 65
19.13 Executing methods in IANet_DiagTest .. 65

20 Summary of CIM classes .. 67

Page 6 of 75

1 Introduction
1.1 Scope
Network Configuration Services version 2 (NCS2) is an easy to use solution for deploying and
managing all Intel end-station networking technologies using industry standard methods. This document
describes the external view of the Intel® PRO Network Connections WMI1 Provider (referred to
throughout this document as "NCS2 WMI Provider"). The NCS2 WMI Provider is a network
configuration block of NCS2.
The NCS2 WMI Provider is a set of software components that implements the WMI network classes.
These classes are based on the Distributed Management Task Force (DMTF) CIM Schema version 2.6.
This document does not repeat information contained in the Managed Object Format (MOF) files
provided with this product (e.g., details of the meanings of individual attributes can be found in the
MOF attribute descriptions).
This document describes how a WMI application such as Intel® PROSet for Windows* Device
Manager uses classes to configure a system’s network. Readers should be familiar with WMI APIs and
the WMI SDK (available from http://www.microsoft.com/).

1.2 Related Documents
• CIM schema version 2.0, 2.2 published by Distributed Management Task Force (DMTF),

http://www.dmtf.org.
• Microsoft* Windows Management Instrumentation (and other manageability information)

http://www.microsoft.com/hwdev/WMI/.
• Web-based Enterprise Management (WBEM) initiative by DMTF

http://www.dmtf.org/wbem/index.html.
• WMI (Microsoft CIM implementation) SDK

http://msdn.microsoft.com/code/sample.asp?url=/msdn-files/027/001/566/msdncompositedoc.xml

1 WMI stands for Windows Management Instrumentation

Page 8 of 75

http://www.microsoft.com/
http://www.dmtf.org/
http://www.microsoft.com/hwdev/WMI/
http://www.dmtf.org/wbem/index.html
http://msdn.microsoft.com/code/sample.asp?url=/msdn-files/027/001/566/msdncompositedoc.xml

2 WMI
Web-based Enterprise Management (WBEM) is a Distributed Management Task Force (DMTF)
initiative intended to provide enterprise system managers with a standardized, cost-effective method for
end station management. The WBEM initiative encompasses a multitude of tasks, ranging from simple
workstation configuration to full-Scale enterprise management across multiple platforms. Central to the
initiative is the Common Information Model (CIM), an extensible data model for representing objects
that exist in typical management environments, and the Managed Object Format (MOF)mof_8opx.htm
language for defining and storing modeled data.
Windows Management Instrumentation (WMI) is an implementation of the WBEM initiative for
Microsoft* Windows* platforms
WMI consists of two main components: the Core and the SDK.
Core - These components are part of the Operating System. They are required for a WMI-enabled
application to work, and must be installed in order to use the SDK.
SDK - The SDK contains tools to browse the WMI schema, extend the schema, create providers,
register and use WMI events. It also provides documentation useful in developing applications that will
use WMI. The SDK is installed as part of the Microsoft Platform SDK installation process.
The SDK is supported on Microsoft Windows NT4* SP4 or SP5, Windows 2000, Windows Me,
Windows XP and Microsoft Windows Server* 2003.
The WMI architecture consists of the following components:
• Management applications
• Managed objects
• Providers
• Management infrastructure (consisting of the Windows Management and Windows Management

repository)
• Windows Management API (which uses COM/DCOM to enable providers and management

applications to communicate with the Windows Management infrastructure.
Management applications process or display data from managed objects, which are logical or physical
enterprise components. These components are modeled using CIM and accessed by applications through
Windows Management. Providers use the Windows Management API to supply Windows Management
with data from managed objects, to handle requests from applications and to generate notification of
events.
The management infrastructure consists of Windows Management (for handling the communication
between management applications and providers) and the Windows Management repository (for storing
data). The Windows Management repository holds static management data. Dynamic data is generated
only on request from the providers. Data is placed in the repository using either the MOF language
compiler or the Windows Management API.
Applications and providers communicate through Windows Management using the Windows
Management API, which supplies such services as event notification and query processing.
The following diagram shows the interrelationship of these components:

Page 9 of 75

2.1 Common Information Model (CIM Schema)
The Common Information Model (CIM) presents a consistent and unified view of all types of logical
and physical objects in a managed environment. Managed objects are represented using object-oriented
constructs such as classes. The classes include properties that describe data and methods that describe
behavior. The CIM is designed by the DMTF to be operating system and platform independent, however
the Microsoft implementation predominates the specification. The WBEM technology includes an
extension of the CIM for the Microsoft Windows operating system platforms. Please refer to the DMTF
CIM schema on DMTF web site for more information.
The CIM defines three levels of classes:
• Classes representing managed objects that apply to all areas of management. These classes provide a

basic vocabulary for analyzing and describing managed systems and are part of what is referred to as
the core model.

• Classes representing managed objects that apply to a specific management area but are independent
of a particular implementation or technology. These classes are part of what is referred to as the
common model - an extension of the core model.

• Classes representing managed objects that are technology-specific additions to the common model.
These classes typically apply to specific platforms such as UNIX or the Microsoft Win32
environment.

All classes can be related by inheritance, where a child class includes data and methods from its parent
class. Inheritance relationships are not typically visible to the management application using them, nor
are the applications required to know the inheritance hierarchy. Class hierarchies can be obtained using
applications that are included in the WMI Tools (see the WMI Tools at http://www.microsoft.com for
more information).
Windows Management also supports association classes. Association classes link two different classes
to model a user-defined relationship, and are visible to management applications. Windows

Page 10 of 75

Management defines association classes to support system classes. Third-party developers can also
define association classes for their management environment.
WBEM supports the concept of schemas to group the classes and instances that are used within a
particular management environment. The Platform SDK includes two schemas: the CIM schema and the
Microsoft Win32 schema. The CIM schema contains the class definitions for the first two levels of the
CIM. These classes represent managed objects that are part of every management environment
regardless of platform. The Win32 schema contains class definitions for managed objects that are part of
a typical Win32 environment.
For additional information on CIM, visit http://www.dmtf.org.

Page 11 of 75

http://www.dmtf.org/

3 Main Features
The main features exposed by the NCS2 WMI Provider are divided into the following categories:

3.1 Adapter
• Enumerate all physical adapters supported by Intel PROSet.
• Enumerate an installed adapter’s settings.
• Add/Remove/Update settings for an installed adapter.
• Obtain an adapter’s Physical Device information.
• Obtain an adapter’s System Slot Device information.
• Uninstall an adapter.
• Update and change an adapters Boot Agent and associated settings.

3.2 Team
• Enumerate the teams supported by Intel PROSet.
• Create/Remove a Team of adapters.
• Add/Remove/Update Settings of the Team.
• Add/Remove member adapters for a team.
• Obtain the IPv4 protocol settings for a team.

3.3 VLAN
• Enumerate Virtual LANs on an adapter or team.
• Create/Remove Virtual LANs on a physical adapter or a team of adapters.
• Add/Remove/Update Settings of the VLAN.
• Obtain the IPv4 protocol settings for a VLAN.

3.4 Diagnostics
• Enumerate all supported diagnostic tests/settings/result for all physical Intel adapters.
• Run/Stop diagnostic test on a physical Intel adapter.

Page 12 of 75

4 Installed Files
4.1 Executables
There are six separate dynamic linking libraries and one executable for the Provider:

Filename Description
Ncs2Prov.exe The instance and method provider. Implements the Ethernet Adapter

Schema, the Teaming Schema, the Setting Schema, the VLAN Schema
and the Diagnostic Schema.

Ncs2Core.dll Implements the Ethernet Adapter Schema.

Ncs2Diag.dll Implements the Diagnostics Schema.

Ncs2Boot.dll Implements the Boot Agent Schema.

Ncs2Team.dll Implements the Team Schema.

Ncs2VLAN.dll Implements the VLAN Schema.

Ncs2InstUtility.dll Implements the common utility functions.

4.2 MOF Files
There are separate MOF files for language neutral and language specific data. For more information on
localization, refer to section 7.

4.3 MOF Files for IntelNCS2 Namespace
Filename Description
ICmLn.mof CIM base classes on which the NCS2 classes depend.

ICmEnu.mfl US English version of the CIM base classes.

ICoreLn.mof Classes for the IEEE 802.3 adapters.

ICoreEnu.mfl US English textual amendments to the adapter classes.

IBootLn.mof Classes for the IEEE 802.3 boot service.

IBootEnu.mfl US English textual amendments to the 802.3 boot service classes.

IDiagLn.mof Classes for the CDM (Common Diagnostic Model).

IDiagEnu.mfl US English textual amendments to the CDM classes.

ITeamLn.mof Classes for the IEEE 802.3 teams.

ITeamEnu.mfl US English textual amendments to the team classes.

IVLANLn.mof Classes for the IEEE 802.3 VLANs.

IVLANEnu.mfl US English textual amendments to the VLAN classes.

Page 13 of 75

5 Security
The NCS2 WMI Provider uses client impersonation to manage the security. Every call into the Provider
will be made in the client’s own security context. This context is passed down to the lower layers. An
operation may fail if the user does not have suitable administrative rights on the target machine.

Page 14 of 75

6 Namespace and Context
6.1 Namespace
The CIM classes reside in a namespace. The standard Microsoft namespace is called “root/cimv2” and is
based on CIM v2.2.
The NCS2 WMI Provider is based on CIM v2.6. Because of this, and because of differences used in the
keys of the objects, the NCS2 WMI Provider classes reside in a separate namespace called
“root/IntelNCS2”. Intel PROSet for Windows Device Manager uses the “root/IntelNCS2” namespace.

6.2 WBEM Context
Context objects are used to provide additional information to the NCS2 WMI Provider that cannot be
passed as a parameter to a WMI API method. Use the IWbemContext to register context qualifiers. The
interface pointer for the context object is passed as the last parameter of an IWbemServices method.
The following table contains the context qualifiers (named values) used by the NCS2 WMI Provider.
ClientSetId is only used in conjunction with specific functional areas of the Provider, whereas
MachineName can be set for all IWbemServices calls.
Any Read done with a context will read the current configuration until a write operation is performed.
Subsequent reads will show the system as it would be after the write has succeeded.
A NULL context can be used for reads.

Context
Qualifier

Variant
Type

Description

ClientSetId VT_BSTR Identifies the application's copy of IANet network classes. The application cannot
make any changes to the classes or their properties without first establishing a
client handle. See the section on the IANet_NetService class to see how to
establish and use a client handle.
This qualifier is not required if the application is only going to read data from the
classes.
The client handle allows the NCS2 software to manage single access to the
configuration.

MachineName VT_BSTR The name of the machine that is connecting to the Provider. This is required for
logging.

Page 15 of 75

7 Locales and Localization
7.1 Localized MOF files
All the MOF files used by the NCS2 WMI Provider are localized according to the Microsoft Windows
Management Instrumentation (WMI) globalization model. To accomplish this, each class definition is
separated into the following:
• a language-neutral version that contains only the basic class definition in the .mof file.
• a language-specific version that contains localized information, such as property descriptions that are

specific to a locale in the corresponding .mfl file.

7.2 Class Storage
The language-specific class definitions are stored in a child sub-namespace beneath the namespace that
contains a language-neutral basic class definition. For example, for the NCS2 WMI Provider, a child
namespace ms_409 will exist beneath the root/intelncs2 namespace for the English locale. Similarly,
there exists a child sub-namespace for each supported language beneath the root/intelncs2 namespace.

7.3 Runtime Support
To retrieve localized data, a WMI application can specify the locale using strLocale parameter in
SWbemLocator.ConnectServer and IWbemLocator::ConnectServer calls. If the locale is not specified,
the default locale for that system will be used. (e.g. MS_409 for US English). This locale is used to
select the correct namespace when adding in the English strings.
In addition, IWbemServices::GetObject, SWbemServices.GetObject, IWbemServices:: ExecQuery, and
SWbemServices.ExecQuery must specify the WBEM_FLAG_USE_AMENDED_QUALIFIERS flag to
request localized data stored in the localized namespace, along with the basic definition. This is required
in all functions that produce displayable values using value maps or display descriptions or other
amended qualifiers from the MOF files.

Page 16 of 75

8 Error Reporting
8.1 IANet_ExtendedStatus
This section details how to handle errors generated by NCS2 WMI Provider.
How and when an error object is returned depends on whether a call is synchronous, semi-synchronous
or asynchronous. In most cases, the HRESULT is set to WBEM_E_FAILED when an error occurs. At
this point, however, it is unknown whether WMI or the NCS2 WMI Provider generated the error.

8.2 Getting the Error Object
8.2.1 Synchronous Calls
Use GetErrorInfo() to get the IErrorInfo object. Use QueryInterface() to get the IWbemClassObject that
contains the error information.

8.2.2 Asynchronous Calls
The IWbemClassObject is passed back as the last item in the last SetStatus() call.
After you get the error object instance, you can check the __Class property to determine the origin of the
error. WMI creates an instance of __ExtendedStatus, and the NCS2 WMI Provider creates an instance of
IANet_ExtendedStatus for errors relating to IANet_ classes and NCS2 WMI Provider.
IANet_ExtendedStatus is derived from __ExtendedStatus and contains the following attributes:

8.3 Error Object Qualifiers
Context Qualifier Description
Description Description of the error tailored to the current locale.

File Code file where the error was generated.

Line Line number in the code file with the error.

ParameterInfo Class or attribute that was being utilized when the error occurred.

Operation Operation being attempted when the error occurred.

ProviderName Name of the Provider that caused the error.

StatusCode Code returned from the internal call that failed.

ClientSetHandle Client Set handle used for the operation.

RuleFailureReasons Reason for operation failure. An operation can fail because a technical
rule has failed. (e.g., you must have a management adapter in certain
teams).

8.4 Error Codes
For all error codes, the NCS2 WMI Providers gives a description customized to the locale. Below is a
list of possible error codes that the Provider may return. Error codes are in the form of HRESULT with
severity set to one (1) and facility set to ITF. An application may use these codes as a basis for a
recovery action.
0x80040901 "WMI: Put property failed"
0x80040902 "WMI: No class object"
0x80040903 "WMI: Failed to create class"
0x80040904 "WMI: Failed to spawn instance of class"

Page 17 of 75

0x80040905 "WMI: Failed to create safe array"
0x80040906 "WMI: Failed to put safe array"
0x80040907 "WMI: Failed to return object to WMI"
0x80040908 "WMI: Get property failed"
0x80040909 "WMI: Unexpected type while getting property"
0x8004090A "WMI: Class not implemented by this provider"
0x8004090B "WMI: Unable to parse WQL statement"
0x8004090C "WMI: Provider only supports WQL"
0x8004090D "WMI: Parameter in context has the wrong type"
0x8004090E "WMI: Error formatting debug log"
0x8004090F "WMI: bad object path"
0x80040910 "WMI: Failed to update setting"
0x80040911 "WMI:[Null parameter passed to method"
0x80040912 "Setting value too small"
0x80040913 "Setting value too big"
0x80040914 "Setting not in step"
0x80040915 "String setting is too long"
0x80040916 "Setting is not one of the allowed values"
0x80040917 "WMI: Qualifier not found"
0x80040918 "WMI: Qualifier set not found"
0x80040919 "WMI: Safe array access failed"
0x8004091A "WMI: Unhandled exception"
0x8004091B "WMI: Operation is not supported for this class"
0x8004091C "WMI: Unexpected event class"
0x8004091D "WMI: Bad event data"
0x8004091E "WMI: Operation succeeded with warnings"
0x8004081F "WMI: The NCS2 Service has been stopped"

Page 18 of 75

9 The Core Schema
The Core Schema consists of the IANet_NetService class.

9.1 Core Schema Diagram
CORE SCHEMA

CIM_ManagedSystemElement

CIM_LogicalElement

CIM_Service

void BeginApply([OUT])
void Apply([IN], [OUT])

string Version
IANet_NetService

9.2 IANet_NetService
9.2.1 Purpose
The IANet_NetService class is the root object from the IANet_ schema. This class enables the client to
access the session that is required to perform sets.

9.2.2 Instances
There is one instance of this object. The client should not rely on the key used for this class. Instead, the
client should get the instance of the class by enumerating all instances of IANet_NetService.

9.2.3 Creating Instances
The user is not able to create instances of IANet_NetService.

9.2.4 Removing Instances
The user is not able to delete the instance of IANet_NetService.

9.2.5 Local Properties
This class implements the following local attribute:

Property Description
Version Contains the current version of the Core Provider.

Page 19 of 75

9.2.6 Modifiable Properties
There are no user modifiable properties of this class.

9.2.7 Unsupported Properties
The following properties are not required for Intel PROSet and are, therefore, not supported:
Caption, Description, Install Date, Started, Start Mode, Status

Methods
The following methods are implemented in IANet_NetService:
void BeginApply(([OUT] uint32 ClientSetHandle)

Used to set a Client session handle , which should be
placed in the context object in the ClientSetId qualifier.

void Apply([IN] uint32 ClientSetHandle,
 [OUT] uint32 FollowupAction
);

Applies changes made with a particular session handle and
releases a session handle after it has been used. The uint32
argument returned is used by the Provider to tell the
application the server must be rebooted before the changes
will take effect. (This can be accomplished by calling the
Reboot method on the class Win32_OperatingSystem).
Values:
1 – system reboot required
0 – no reboot required

9.2.8 Use Cases
A session handle is required to change the configuration. The session handle allows the NCS2 software
to manage single access to the configuration, thereby preventing multiple changes to the configuration.

9.2.8.1 Getting a Client Handle
The client must get the object path of the single instance of IANet_NetService before accessing the
client handle. Call IWbemServices::CreateInstanceEnum and pass the name of the class:
IANet_NetService. (this is equivalent to calling IWbemServices::ExecQuery with the query “SELECT *
FROM IANet_NetService).
Before making any changes to the configuration, the client must get a client handle. Use the BeginApply
method to start a fresh client change configuration. The client can use IWbemServices::ExecMethod to
execute a method on a CIM object and will need the object path, from __PATH attribute of the instance
of IANet_NetService.

9.2.8.2 Using a Client Handle in the IWbemContext Object
After the client obtains a client handle, it must create an IWbemContext object. Store the client handle in
the ClientSetId qualifier of this object. A pointer to this COM object should be passed to every call into
IWbemServices. The client handle is not required when making calls to access the IANet_NetService
object as this takes the handle as an explicit argument.

9.2.8.3 Finishing with a Client Handle
After changing the configuration, call the Apply method to commit the changes. This may return a
follow-up action code (e.g., reboot the system before the changes can take effect).

Page 20 of 75

10 Ethernet Adapter Schema
The adapter schema is used to model the various configurable Intel adapters. This schema is based on
the CIM v2.6 schema.

10.1 Adapter Schema Diagram
ADAPTER SCHEMA

IANet_TeamedMemberAdapter

CIM_EthernetAdapter

IANet_EthernetAdapter

IANet_AdatperSettingIANet_DiagResultIANet_DiagTest

uint32 AdvancedCableTest([OUT], [OUT], [OUT])
uint32 ExpressTeam([IN])

uint32 GetExpressTeamInfo([OUT], [OUT], OUT])
uint32 GetPowerUsageOptions([OUT], [OUT], [OUT], [OUT])

uint32 IdentifyAdapter([IN])
uint32 SetPowerUsageOptions([IN], [IN], [IN], [IN])

uint32 TestCable([OUT], [OUT], [OUT])
uint32 TestLinkSpeed([OUT], [OUT])

uint32 AdapterStatus
uint32 ControllerID

string EEPROMVersion
uint32 ExpressTeaming
uint32 HardwarStatus

uint16 MediaType
string OriginalDisplayName

string[] OtherCapabilityDescriptions
string[] OtherEnabledCapabilities

uint16[] OtherEnabledCapabilityIDs
string OtherMediaType
string OtherPhyDevice

string PartNumber
uint16 PHYDevice

string SlotID
uint32 SupportsCableTest

IANet_PhysicalEthernetAdapter

uint32 ProgramFlash([IN], [IN], [OUT])
uint32 ReadFlash([OUT])

uint32 FlashImageType
boolean InvalidImageSignature

boolean UpdateAvailable
string Version

uint32 VersionNumber

IANet_BootAgent

Page 21 of 75

10.2 IANet_PhysicalEthernetAdapter
10.2.1 Purpose
IANet_PhysicalEthernetAdapter defines the capabilities and status of all the installed Intel adapters. The
class is derived from the an abstract class IANet_EthernetAdapter. IANet_EthernetAdapter is derived
from CIM_EthernetAdapter superclass defined in CIMv2.5. CIM_EthernetAdapter is derived from
CIM_NetworkAdapter, an Abstract class defining general networking hardware concepts such as
PermanentAddress, CurrentAddress, Speed of operation, etc.

10.2.2 Instances
Instances of this class will exist for supported and installed Intel adapters.

10.2.3 Creating Instances
The user cannot create instances of IANet_PhysicalEthernetAdapter.

10.2.4 Removing Instances
Deleting an instance of IANet_PhysicalEthernetAdapter will uninstall physical adapters. A client handle
is required for this operation.

10.2.5 Modifying Properties
There are no user-modifiable properties for this class.

10.2.6 Local Properties
This class implements the following local properties:

Property Description
AdapterStatus Specifies the current status of the adapter.

ControllerID The unique identifier for this adapter

EEPROMVersion Contains device EEPROM version.

ExpressTeaming Indicates if Express Teaming is enabled.

HardwareStatus Specifies current status of device.

MediaType The media which interfaces to this phy.

OriginalDisplayName Original name value will show if Express Teaming is enabled.

OtherCapabilityDescriptions An array of descriptions of OtherEnabledCapabilities of the adapter.

OtherEnabledCapabilities Used to state Other Capabilities of the adapter.

OtherEnabledCapabilityIDs An unmapped value list of IDs of Other Capabilities.

OtherMediaType Shows media type if MediaType value is ‘Other’.

OtherPhyDevice Shows name of device if PHYDevice value is ‘Other’.

PartNumber The PBA manufacturing part number.

PHYDevice PHY used on this adapter.

SlotID Value that correlates the physical attributes to the logical access method.

SupportsCableTest Value to indicate support for advanced cable test.

Page 22 of 75

10.2.7 Unsupported Properties
The following properties are not required for Intel PROSet and are, therefore, not supported:
AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions, DriverComments,
DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright, DriverPath,
DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription, ExcessiveCollisions,
FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted, FrameTooLongs,
FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors, IdentifyingDescriptions, InstallDate,
InternalMACReceiveErrors, InternalMACTransmitErrors, LastErrorCode, LateCollisions,
MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames, NoBufferReceiveErrors,
NoBufferXmitErrors, OctetsReceived, OctetsTransmitted, OtherIdentifyingInfo, PacketTaggingStatus,
PowerManagementCapabilities (this is exposed as a method), PowerManagementSupported (this is
exposed as a method), PowerOnHours, ShortFramesReceived, SingleCollisionFrames, SymbolErrors,
SQETestErrors, TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors,
TotalPacketsReceived, TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors,
TroubleShootingCauses, TroubleShootingProblems, TroubleShootingSeverityLevels,
TroubleShootingSolutions

10.2.8 Methods
This class implements the following methods:
uint32 AdvancedCableTest([OUT] boolean,
 [OUT] array[string],
 [OUT] array[string]
);

Performs a set of advanced cable tests on supported
adapters.

uint32 ExpressTeam([IN Boolean]); Creates/Removes the express team.

uint32 GetExpressTeamInfo([OUT] boolean,
 [OUT] uint16,
 [OUT] uint32
);

Gets the express team information.

uint32 GetPowerUsageOptions([OUT] uint32,
 [OUT] uint32,
 [OUT] uint32,
 [OUT] uint32
);

Detects any optional power usage settings (e.g., power usage
for standby, battery operation, etc.).

uint32 IdentifyAdapter([IN uint16]); Identifies adapter by flashing the light on the adapter for a few
seconds. This method will only work for physical adapters.

uint32 SetPowerUsageOptions ([IN] uint32,
 [IN] uint32,
 [IN] uint32,
 [IN] uint32
);

Changes power usage options (e.g., method can be used to
reduce power usage for standby, battery operation, etc.) Note:
Power usage settings are stored and used for subsequent
reboots.

uint32 TestCable ([OUT] array[string],
 [OUT] array[string],
 [OUT] array[string]
);

Analyzes the network cable connected to the adapter and
reports aspects of the cable such as length, quality and signal
quality.

unit32 TestLinkSpeed ([OUT] uint32,
 [OUT] string
);

Determines whether the adapter is running at full speed.

Page 23 of 75

10.2.9 Unsupported Methods
The following methods are not required for Intel PROSet and are, therefore, not supported:
EnableDevice, OnlineDevice, QuiesceDevice, Reset, RestoreProperties, SaveProperties, SetPowerState.

10.2.10 Associations
• IANet_DiagTestForMSE is used to associate an IANet_DiagTest with an

IANet_PhysicalEthernetAdapter.
• IANet_DiagResultForMSE is used to associate an IANet_DiagResult with an

IANet_PhysicalEthernetAdapter.
• IANet_DeviceBootServiceImplementation is used to associate an IANet_BootAgent with an

IANet_PhysicalEthernetAdapter.
• IANet_AdapterToSettingAssoc is used to associate an IANet_AdapterSetting with an

IANet_PhysicalEthernetAdapter.
• IANet_TeamedMemberAdapter is used to associate a IANet_TeamOfAdapters with an

IANet_PhysicalEthernetAdapter.

10.3 IANet_BootAgent
10.3.1 Purpose
This class is used to capture information about the network boot capabilities of an adapter (e.g., settings
for the PXE Boot Agent supported by some Intel adapters). This class is derived from
CIM_BootService.

10.3.2 Instances
An IANet_BootAgent instance exists for each adapter that supports boot agent capabilities, even if the
boot agent is not currently installed.

10.3.3 Creating Instances
The user cannot create instances of IANet_BootAgent. An instance exists only if the adapter supports
boot agent functionality.

10.3.4 Removing Instances
The user cannot remove instances of IANet_BootAgent.

10.3.5 Modifying Properties
There are no user-modifiable properties of this class.

10.3.6 Associations
• IANet_DeviceBootServiceImplementation is used to associate an IANet_PhysicalEthernetAdapter

with an IANet_BootAgent, if the adapter supports it.
• IANet_BootAgentToBootAgentSettingAssoc is used to associate an IANet_BootAgentSetting with

an IANet_BootAgent.

Page 24 of 75

10.3.7 Local Properties
The following read only properties are required by Intel PROSet:

Property Description

FlashImageType The boot agent flash image type.

InvalidImageSignature Boolean value denoting corrupted flash image.

UpdateAvailable Indicates if install or upgrade to boot agent software is available.

Version String value of boot agent version.

VersionNumber Unsigned integer value of boot agent version.

10.3.8 Unsupported Properties
The following properties are not required by Intel PROSet and are, therefore, not supported:
Caption, Description, InstallDate, Started, StartMode, Status.

10.3.9 Methods
There are two methods on this class that can be used to update the Flash ROM on the NIC:
uint32 ProgramFlash([IN] uint32,
 [IN] array[uint8],
 [OUT] uint32,
);

This method is used to update the Flash ROM on the NIC. This
will cause the NIC to stop communicating with the network while
the flash is updated.

uint32 ReadFlash([OUT] array[uint8]); This method reads the Flash ROM on the NIC.

10.3.10 Unsupported Methods
StartService, StopService

Page 25 of 75

11 Adapter Setting Schema
11.1 Adapter Setting Schema Diagram

ADAPTER SETTING SCHEMA

IANet_Setting

IANet_AdapterSetting

IANet_AdapterToSettingAssoc

CIM_Setting

IANet_PhysicalEthernetAdapter

uint64 base
sint64 CurrentValue
sint64 DefaultValue

sint64 max
sint64 min

sint64 Scale
sint64 step

IANet_AdapterSettingInt
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_AdapterSettingEnum
sint64 CurrentValue
sint64 DefaultValue

string FirstLabel
string LastLabel

sint64[] PossibleValues

IANet_AdapterSettingSlider
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_AdapterSettingMultiSelection
string CurrentValue
string DefaultValue
uint32 MaxLength

IANet_AdapterSettingString

11.2 IANet_AdapterToSettingAssoc
11.2.1 Purpose
This class is used to group a collection of IANet_AdapterSetting instances.

11.2.2 Instances
Each adapter can have several associated IANet_AdapterToSettingAssoc instances.

11.2.3 Creating instances
The user cannot create instances of IANet_ AdapterToSettingAssoc.

11.2.4 Removing instances
The user cannot remove instances of IANet_ AdapterToSettingAssoc.

11.2.5 Modifying properties
There are no user-modifiable properties for this class.

11.2.6 Associations
An IANet_AdapterToSettingAssoc instance will exist to associate each IANet_PhysicalEthernetAdapter
with its IANet_AdapterSetting.

11.2.7 Methods
There are no supported methods for this class.

11.2.8 Unsupported Properties
None

Page 26 of 75

11.3 IANet_AdapterSetting
11.3.1 Purpose
This abstract class is used to describe a settable property in a configuration. The class is derived from
IANet_Setting.

11.3.2 Instances
Instances of this class will exist for each setting on each adapter.
There are several sub-classes for IANet_AdapterSetting. The sub-classes correspond to the different
types and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI
that may be used to display or change the settings.

11.3.3 Creating instances
The user cannot create instances of IANet_AdapterSetting.

11.3.4 Removing instances
The user cannot remove instances of IANet_AdapterSetting.

11.3.5 Modifying properties
This abstract class has no modifiable properties, however, the child classes have modifiable properties
(see sub-classes listed in this section).

11.3.6 Associations
Each IANet_AdapterSetting instance is associated with an IANet_PhysicalEthernetAdapter instance
using an instance of IANet_ AdapterToSettingAssoc.

11.3.7 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

11.3.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.4 IANet_AdapterSettingInt
11.4.1 Purpose
The class models a setting that takes an integer value. There are several IANet setting classes used to
model integers. The differences between these classes concerns how the integer is displayed and
modified by the GUI, and how validation is done by the Provider. For IANet_AdapterSettingInt, it is
expected that the GUI will display an edit box with a spin control.

11.4.2 Instances
An instance of this class exists for each setting that should be displayed as an integer edit box.

11.4.3 Creating Instances
The user cannot create instances of this class.

11.4.4 Removing Instances
The user cannot remove instances of this class.

Page 27 of 75

11.4.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this
property by using IWbemClassObject::Put() to change the value, then call
“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max
 CurrentValue >= min

 (CurrentValue – min) is a multiple of step
Where max, min, CurrentValue and step are all properties of IANet_SettingInt.

11.4.6 Local Properties
This class implements the following local properties:

Property Description
base Root from which the integer value may take values (example; decimal = base 10).

CurrentValue The actual value of the integer setting.

DefaultValue The initial value of the integer setting.

max The maximum value that the setting can have.

min The minimum value that the setting can have.

Scale Unit to measure value of setting.

step The granularity of the integer value.

11.4.7 Associations
Each IANet_AdapterSettingInt instance is associated with an IANet_PhysicalEthernetAdapter instance
using an instance of IANet_AdapterToSettingAssoc.

11.4.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.4.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

11.5 IANet_AdapterSettingEnum
11.5.1 Purpose
The class models a enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the
GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list
combo box).

11.5.2 Instances
An instance of this class exists for each setting that will be displayed as an enumeration.

11.5.3 Creating Instances
The user cannot create instances of this class.

11.5.4 Removing Instances
The user cannot remove instances of this class.

Page 28 of 75

11.5.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

11.5.6 Associations
Each IANet_AdapterSettingEnum instance is associated with an IANet_PhysicalEthernetAdapter
instance using an instance of IANet_AdapterToSettingAssoc.

11.5.7 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

11.5.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.5.9 Methods
There are no supported methods on this class. To make changes to a setting modify the required property
and call PutInstance.

11.6 IANet_AdapterSettingSlider
11.6.1 Purpose
The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is
expected that the GUI will display a slider which will allow the user to choose the value in a graphical
manner – the actual value chosen need not be displayed.

11.6.2 Instances
An instance of this class exists for each setting that will be displayed as a slider.

11.6.3 Creating Instances
The user cannot create instances of this class.

11.6.4 Removing Instances
The user cannot remove instances of this class.

11.6.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 29 of 75

11.6.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

FirstLabel The label that should be displayed to the left of the slider.

LastLabel The label that should be displayed to the right of the slider.

PossibleValues The range of values which should be displayed with the first value on the left and last value on
the right side of the slider.

11.6.7 Associations
Each IANet_AdapterSettingSlider instance is associated with an IANet_PhysicalEthernetAdapter
instance using an instance of IANet_AdapterToSettingAssoc.

11.6.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.6.9 Methods
There are no supported methods on this class. To make changes to a setting, modify the required
property and call PutInstance.

11.7 IANet_AdapterSettingMultiSelection
11.7.1 Purpose
This class models a setting whereby the user can select several options from a list of options. For
IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box
which will allow the user to choose any (or no) option(s).

11.7.2 Instances
An instance of this class exists for each setting that will be displayed as a multi-selection.

11.7.3 Creating Instances
The user cannot create instances of this class.

11.7.4 Removing Instances
The user cannot remove instances of this class.

11.7.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 30 of 75

11.7.6 Local Properties
This class implements the following properties:

Property Description
CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the
PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

11.7.7 Associations
Each IANet_AdapterSettingMultiSelection instance is associated with an
IANet_PhysicalEthernetAdapter instance using an instance of IANet_AdapterToSettingAssoc.

11.7.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.7.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

11.8 IANet_AdapterSettingString
11.8.1 Purpose
This class models a setting whereby the user can enter a free-form string value. For
IANet_AdapterSettingString, it is expected that the GUI will display an edit box.

11.8.2 Instances
An instance of this class exists for each setting that will be displayed as an edit box.

11.8.3 Creating Instances
The user cannot create instances of this class.

11.8.4 Removing Instances
The user cannot remove instances of this class.

11.8.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting.

11.8.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

MaxLength The maximum string length allowed.

11.8.7 Associations
Each IANet_AdapterSettingString instance is associated with an IANet_PhysicalEthernetAdapter
instance using an instance of IANet_AdapterToSettingAssoc.

Page 31 of 75

11.8.8 Unsupported Properties
SettingID and RequiresSession are not used.

11.8.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property, then call PutInstance.

Page 32 of 75

12 Boot Agent Setting Schema
12.1 Boot Agent Setting Schema Diagram

BOOT AGENT SETTING
SCHEMA

CIM_Setting

IANet_Setting

IANet_BootAgentSetting IANet_BootAgent

IANet_BootAgentToBootAgentSettingAssoc
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_BootAgentSettingEnum

12.2 IANet_BootAgentToBootAgentSettingAssoc
12.2.1 Purpose
This class is used to group a collection of IANet_BootAgentSetting instances.

12.2.2 Instances
Each BootAgent can have several associated IANet_BootAgentToBootAgentSettingAssoc instances.

12.2.3 Creating Instances
The user cannot create instances of IANet_BootAgentToBootAgentSettingAssoc.

12.2.4 Removing Instances
The user cannot remove instances of IANet_ BootAgentToBootAgentSettingAssoc.

12.2.5 Modifying Properties
There are no user-modifiable properties for this class.

12.2.6 Associations
An IANet_BootAgentToBootAgentSettingAssoc instance will exist to associate each Boot Agent
(IANet_BootAgent) with its setting.

Page 33 of 75

12.2.7 Methods
There are no supported methods for this class.

12.2.8 Unsupported Properties
None

12.3 IANet_BootAgentSetting
12.3.1 Purpose
This abstract class is used to describe a settable property in a configuration. The class is derived from
IANet_Setting.

12.3.2 Instances
Instances of this class will exist for each setting on each Boot Agent.
There are several sub-classes for IANet_BootAgentSetting. The sub-classes correspond to the different
types and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI
that may be used to display or change the settings.

12.3.3 Creating Instances
The user cannot create instances of IANet_BootAgentSetting.

12.3.4 Removing Instances
The user cannot remove instances of IANet_BootAgentSetting.

12.3.5 Modifying Properties
This abstract class has no modifiable properties, however, the child classes have modifiable properties
(see below).

12.3.6 Associations
Each IANet_BootAgentSetting instance is associated with an IANet_BootAgent instance using an
instance of IANet_BootAgentToBootAgentSettingAssoc.

12.3.7 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

12.3.8 Unsupported Properties
SettingID and RequiresSession are not used.

12.4 IANet_BootAgentSettingEnum
12.4.1 Purpose
The class models a enumeration setting value. For IANet_BootAgentSettingEnum, it is expected that the
GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list
combo box).

12.4.2 Instances
An instance of this class exists for each setting that will be displayed as an enumeration.

12.4.3 Creating Instances
The user cannot create instances of this class.

12.4.4 Removing Instances
The user cannot remove instances of this class.

Page 34 of 75

12.4.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

12.4.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

12.4.7 Associations
Each IANet_BootAgentSettingEnum instance is associated with an IANet_BootAgent instance using an
instance of IANet_BootAgentToBootAgentSettingAssoc.

12.4.8 Unsupported Properties
SettingID and RequiresSession are not used.

12.4.9 Methods
There are no supported methods on this class. To make changes to a setting modify the required property
and call PutInstance.

Page 35 of 75

13 Team Schema
The Team Schema describes how the Ethernet adapters are grouped together into teams.

13.1 Team Schema Diagram
TEAM SCHEMA

CIM_NetworkAdapterRedundanyComponent

uint16 AdapterFunction
uint16 AdapterStatus

IANet_TeamedMemberAdapter

IANet_NetworkVirtualAdapter

IANet_PhysicalEhternetAdapter

CIM_EthernetAdapter

IANet_EthernetAdapter

IANet_LogicalEthernetAdapter IANet_TeamOfAdapters

uint32 CreateTeam([IN], [IN], [IN], [IN],[OUT])
uint32 GetBestTeamMode([OUT], [OUT], [OUT], [OUT])

uint32 RenameTeam([IN])
uint TestSwitchConfiguration([IN], [OUT], [OUT], [OUT], [OUT], [OUT])

uint32 ValidateAddAdapters([IN], [OUT])
uint32 ValidateSetting([IN], [IN], [IN], [OUT])

uint32 AdapterCount
uint32 MaxAdapterCount

boolean MFOEnabled
uint32 TeamingMode

13.2 IANet_TeamOfAdapters
13.2.1 Purpose
This class implements the CIM_ExtraCapacityGroup class. This class has members that describe the
type of the team, the number of adapters in the team, and the maximum number of adapters that can be
in the team.

13.2.2 Instances
There is an instance of this class for each Intel adapter team.

13.2.3 Creating Instances
To create an empty team, the user will create an instance of IANet_TeamOfAdapters. The user must set
the correct “TeamingMode” before calling IWbemServices::PutInstance() to create the object in the
Provider. The Provider will return a string containing the object path of the new object.

13.2.4 Removing Instances
Correspondingly, to remove a team the user should delete the instance of IANet_TeamOfAdapters. The
Provider will delete the associations to the team members, and will also delete the virtual adapter and
settings for the team.

13.2.5 Modifying Properties
Use Put() to change the value of the “TeamingMode” property, then call PutInstance() to update the
team.
Page 36 of 75

13.2.6 Local Properties
This class implements the following local properties:

Property Description
AdapterCount The number of adapters currently in the team.

MaxAdapterCount The maximum number of adapters allowed in created team.

MFOEnabled Represents the MFO enabled/disabled in the current team.

TeamingMode The type of the current team.

13.2.7 Associations
Each adapter in a team is associated with the team’s instance of IANet_TeamOfAdapters using an
instance of IANet_TeamedMemberAdapter.
The virtual adapter (IANet_LogicalEthernetAdapter) for the team is associated with this class using an
instance of IANet_NetworkVirtualAdapter.

13.2.8 Methods
This class instance supports following methods:

Method Description
uint32 TestSwitchConfiguration(
 [IN, ValueMap {"0","1","2"}:Amended,
 Values {"Start", "Cancel",
 "Results"}: Amended
] uint32 Cmd,
 [OUT, ValueMap
 {"0","1","2"}:Amended,
 Values {"OK", "Error",
 "Progress"}: Amended
] uint32 Status,
 [OUT] uint16 CauseMessageId[],
 [OUT] string strCause[],
 [OUT] uint16 SolutionMessageId[]
 [OUT]string strSolution[]
);

Tests the switch configuration to ensure that the team is
functioning correctly with the switch. This test can be used to
check that link partners i.e., a device that an adapter links to,
such as another adapter, hub, switch, etc., support the chosen
adapter teaming mode. For example, if the adapter is a
member of a Link Aggregration team, then this test can verify
that link partners connected to the adapter support Link
Aggregation.

Page 37 of 75

uint32 GetBestTeamMode(
 [OUT,
 ValueMap {"Passed", "Failed",
 "In Progress",
 "Unknown"}:Amended ,
 Values {"0", "1", "2", "3"}:
 Amended]
 uint32 Status,
 [OUT,
 Units ("Percent"):Amended,
 MinValue (0), MaxValue (100)]
 uint8 PercentOfCoverage,
 [OUT, ValueMap {"0", "1", "2", "4",
 "5"}:Amended ,
 Values {"AFT", "ALB", "SLA",
 "IEEE 802.3ad",
 "SFT"}:Amended]
 uint32 TeamingMode,
 [OUT] uint16 ErrorMessageId
);

GetBestTeamMode selects the most appropriate teaming
mode to use for teaming.

uint32 RenameTeam([IN] string TeamName); RenameTeam changes the name of an existing Intel adapter
Team in the system.

uint32 CreateTeam(
 [IN] IANet_EthernetAdapter REF Adapters[],
 [IN, ValueMap {"0", "1", "2", "4", "5"}:
 Amended,
 Values {"AFT", "ALB", "SLA",
 "IEEE 802.3ad",
 "SFT"}:Amended]
 uint32 TeamingMode,
 [IN] string TeamName,
 [IN] boolean MFOEnable,
 [OUT] IANet_TeamOfAdapters REF
 TeamPath
);

CreateTeam adds a new Intel adapter Team to the system.

uint32 ValidateAddAdapters(
 [IN] IANet_PhysicalEthernetAdapter REF
 Adapters[],
 [OUT] uint16 ValResult
);

Validates the adapters which will be added to a team.

uint32 ValidateSetting(
 [IN] IANet_PhysicalEthernetAdapter REF
 Adapter,
 [IN] string SettingName,
 [IN] sint64 Value,
 [OUT] uint16 ValResult
);

Validates the member adapter setting.

13.2.9 Unsupported Properties
InstallDate and Status are not used.

Page 38 of 75

13.3 IANet_TeamedMemberAdapter
13.3.1 Purpose
This class is used to associate the adapter with the team, determine the function of the adapter in the
team, and establish that the adapter is currently active in the team. This class implements the CIM class
CIM_NetworkAdapterRedundancyComponent.

13.3.2 Instances
An instance of this class exists for each adapter that is a member of a team.

13.3.3 Creating Instances
To add an adapter to a team, create an instance of IANet_TeamedMemberAdapter to associate the
adapter with the team.

13.3.4 Removing Instances
To remove an adapter from the team, remove the instance of IANet_ TeamedMemberAdapter. The
adapter will no longer be part of the team and may be bound to an IP protocol endpoint after the Apply()
function is called.

13.3.5 Modifying Properties
The AdapterFunction property of this class may be modified to describe how the adapter is used within a
team.

13.3.6 Local Properties
This class implements the following local properties:

Property Description
AdapterFunction Describes how the adapter is used in a team.

AdapterStatus Describes the adapters status within the team.

13.3.7 Associations
This is an association class.

13.3.8 Methods
There are no supported methods on this class.

13.4 IANet_NetworkVirtualAdapter
13.4.1 Purpose
This class is used to associate the team’s IANet_TeamOfAdapters with the
IANet_LogicalEthernetAdapter that represents the virtual adapter for the team. The class implements the
CIM class CIM_NetworkVirtualAdapter.

13.4.2 Instances
An instance of this class exists for each Intel adapter team that has been bound to a virtual adapter.

13.4.3 Creating Instances
The user cannot create instances of this class. To create a team the user creates an instance of
IANet_TeamOfAdapters. This class will not exist until after the user has called
IANet_NetService.Apply() within the context of a valid client handle and the IANet_EthernetAdapter
instance has been created.

Page 39 of 75

13.4.4 Removing Instances
The user cannot delete instances of this class.

13.4.5 Associations
This is an association class.

13.4.6 Methods
There are no supported methods on this class.

Page 40 of 75

14 Team Setting Schema
14.1 Team Setting Schema Diagram

TEAM SETTING SCHEMA

IANet_Setting

IANet_TeamSetting IANet_LogicalEhternetAdapter

CIM_Setting

IANet_TeamToTeamSettingAssoc

uint64 base
sint64 CurrentValue
sint64 DefaultValue

sint64 max
sint64 min

sint64 Scale
sint64 step

IANet_TeamSettingInt
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_TeamSettingEnum
sint64 CurrentValue
sint64 DefaultValue

string FirstLabel
string LastLabel

sint64[] PossibleValues

IANet_TeamSettingSlider
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_TeamSettingMultiSelection
string CurrentValue
string DefaultValue
uint32 MaxLength

IANet_TeamSettingString

14.2 IANet_TeamToTeamSettingAssoc
14.2.1 Purpose
This class is used to group a collection of IANet_TeamSetting instances.

14.2.2 Instances
Each Team can have several associated IANet_TeamToTeamSettingAssoc instances.

14.2.3 Creating Instances
The user cannot create instances of IANet_TeamToTeamSettingAssoc.

14.2.4 Removing Instances
The user cannot remove instances of IANet_TeamToTeamSettingAssoc.

14.2.5 Modifying Properties
There are no user-modifiable properties for this class.

14.2.6 Associations
An IANet_TeamToTeamSettingAssoc instance will exist to associate each Team
(IANet_LogicalEthernetAdapter) with its setting (IANet_TeamSetting).

14.2.7 Methods
There are no supported methods for this class.

14.2.8 Unsupported Properties
None.

Page 41 of 75

14.3 IANet_TeamSetting
14.3.1 Purpose
This abstract class is used to describe a settable property in a configuration. The class is derived from
IANet_Setting.

14.3.2 Instances
Instances of this class will exist for each setting on each Team.
There are several sub-classes for IANet_TeamSetting. The sub-classes correspond to the different types
and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI that
may be used to display or change the settings.

14.3.3 Creating Instances
The user cannot create instances of IANet_TeamSetting.

14.3.4 Removing Instances
The user cannot remove instances of IANet_TeamSetting.

14.3.5 Modifying Properties
This abstract class has no modifiable properties, however, the child classes have modifiable properties
(see sub-classes listed in this section).

14.3.6 Associations
Each IANet_TeamSetting instance is associated with an IANet_LogicalEthernetAdapter instance using
an instance of IANet_TeamToTeamSettingAssoc.

14.3.7 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

14.3.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.4 IANet_TeamSettingInt
14.4.1 Purpose
The class models a setting that takes an integer value. There are several IANet setting classes used to
model integers. The differences between these classes concerns how the integer is displayed and
modified by the GUI, and how validation is done by the Provider. For IANet_TeamSettingInt, it is
expected that the GUI will display an edit box with a spin control.

14.4.2 Instances
An instance of this class exists for each setting that should be displayed as an integer edit box.

14.4.3 Creating Instances
The user cannot create instances of this class.

14.4.4 Removing Instances
The user cannot remove instances of this class.

Page 42 of 75

14.4.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this
property by using IWbemClassObject::Put() to change the value, then call
“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max
 CurrentValue >= min

 (CurrentValue – min) is a multiple of step
Where max, min, CurrentValue and step are all properties of IANet_TeamSettingInt.

14.4.6 Local Properties
This class implements the following local properties:

Property Description
base Root from which the integer value may take values. (example; decimal = base 10)

CurrentValue The actual value of the integer setting

DefaultValue The initial value of the integer setting

max The maximum value that the setting can have

min The minimum value that the setting can have

Scale Unit to measure value of setting

step The granularity of the integer value

14.4.7 Associations
Each IANet_TeamSettingInt instance is associated with an IANet_LogicalEthernetAdapter instance
using an instance of IANet_TeamToTeamSettingAssoc.

14.4.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.4.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

14.5 IANet_TeamSettingEnum
14.5.1 Purpose
The class models an enumeration setting value. For IANet_TeamSettingEnum, it is expected that the
GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list
combo box).

14.5.2 Instances
An instance of this class exists for each setting that will be displayed as an enumeration.

14.5.3 Creating Instances
The user cannot create instances of this class.

14.5.4 Removing Instances
The user cannot remove instances of this class.

Page 43 of 75

14.5.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

14.5.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

14.5.7 Associations
Each IANet_TeamSettingEnum instance is associated with an IANet_LogicalEthernetAdapter instance
using an instance of IANet_TeamToTeamSettingAssoc.

14.5.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.5.9 Methods
There are no supported methods on this class. To make changes to a setting modify the required property
and call PutInstance.

14.6 IANet_TeamSettingSlider
14.6.1 Purpose
The class models a setting that specifically handles Slider settings. For IANet_TeamSettingSlider, it is
expected that the GUI will display a slider which will allow the user to choose the value in a graphical
manner – the actual value chosen need not be displayed.

14.6.2 Instances
An instance of this class exists for each setting that will be displayed as a slider.

14.6.3 Creating Instances
The user cannot create instances of this class.

14.6.4 Removing Instances
The cannot remove instances of this class.

14.6.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 44 of 75

14.6.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

FirstLabel The label that should be displayed to the left of the slider

LastLabel The label that should be displayed to the right of the slider

PossibleValues Range of values which should be displayed with the first value on the left and last value on
the right side of the slider

14.6.7 Associations
Each IANet_TeamSettingSlider instance is associated with an IANet_LogicalEthernetAdapter instance
using an instance of IANet_TeamToTeamSettingAssoc.

14.6.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.6.9 Methods
There are no supported methods on this class. To make changes to a setting, modify the required
property and call PutInstance.

14.7 IANet_TeamSettingMultiSelection
14.7.1 Purpose
This class models a setting whereby the user can select several options from a list of options. For
IANet_TeamSettingMultiSelection, it is expected that the GUI will display multi-selection list box
which will allow the user to choose any (or no) option(s).

14.7.2 Instances
An instance of this class exists for each setting that will be displayed as a multi-selection.

14.7.3 Creating Instances
The user cannot create instances of this class.

14.7.4 Removing Instances
The user cannot remove instances of this class.

14.7.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 45 of 75

14.7.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

14.7.7 Associations
Each IANet_TeamSettingMultiSelection instance is associated with an IANet_LogicalEthernetAdapter
instance using an instance of IANet_TeamToTeamSettingAssoc.

14.7.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.7.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

14.8 IANet_TeamSettingString
14.8.1 Purpose
This class models a setting whereby the user can enter a free-form string value. For
IANet_TeamSettingString, it is expected that the GUI will display an edit box.

14.8.2 Instances
An instance of this class exists for each setting that will be displayed as an edit box.

14.8.3 Creating Instances
The user cannot create instances of this class.

14.8.4 Removing Instances
The user cannot remove instances of this class.

14.8.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting.

14.8.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

MaxLength The maximum string length allowed

14.8.7 Associations
Each IANet_TeamSettingString instance is associated with an IANet_LogicalEthernetAdapter instance
using an instance of IANet_TeamToTeamSettingAssoc.

Page 46 of 75

14.8.8 Unsupported Properties
SettingID and RequiresSession are not used.

14.8.9 Methods
There are no supported methods for this class. To make changes to a setting modify the required
property, then call PutInstance.

Page 47 of 75

15 VLAN Schema
15.1 VLAN Schema Diagram

VLAN SCHEMA

CIM_802dot1QVLANService

uint16 CreateVLAN ([IN], [IN], [OUT])

boolean GVRPEnabled
uint32 GVRPJoinTime

IANet_802dot1QVLANService

IANet_Device802dot1QVLANServiceImplementationIANet_VLANFor

IANet_EthernetAdapterstring ParentID
uint16 ParentType
uint16 StatusInfo
string VLANName

IANet_VLAN

15.2 IANet_802dot1QVLANService
15.2.1 Purpose
This class is used to hold the IEEE 802.1Q properties of a network adapter. This class implements the
CIM class CIM_802dot1QVLANService.

15.2.2 Instances
An instance of this class exists for each adapter or team that supports IEEE 802.1Q. Each adapter can
have just one IANet_802dot1QVLANService. Some teams, such as multi-vendor fault tolerant teams do
not support this service.

15.2.3 Creating Instances
The user cannot create instances of this class If the adapter does not have an instance associated with it,
then the adapter does not support this service.

15.2.4 Removing Instances
The user cannot delete instances of this class.

15.2.5 Modifying Properties
There are no modifiable properties of this class.

15.2.6 Associations
Each instance of this class will be associated with one IANet_EthernetAdapter using an instance of
IANet_Device802dot1QVLANServiceImplementation.
Each instance of IANet_802dot1QVLANService can support several VLANs; each VLAN will be
associated with the instance using IANet_VLANFor association.

Page 48 of 75

15.2.7 Methods
uint16 CreateVLAN([in] uint32 VLANNumber,
 [in] string Name,
 [out] IANet_VLAN REF VLANpath
);

Used to create a VLAN on the adapter
or team. The client must supply the
VLAN number and the VLAN name,
and will get the object path of the newly
created VLAN.

15.3 IANet_VLAN
15.3.1 Purpose
This class holds the information for each Intel VLAN. This class implements CIM_VLAN.

15.3.2 Instances
An instance of this class will exist of each Intel VLAN.

15.3.3 Creating instances
To create a VLAN, call CreateVLAN on the appropriate instance of IANet_802dot1QVLANService.

15.3.4 Removing Instances
The user can remove an instance of this class to remove the corresponding VLAN.

15.3.5 Modifying properties
The user is able to modify the VLANNumber and Caption attribute.

15.3.6 Local properties
This class implements the following local properties:

Property Description
ParentID The VLAN parent device ID

ParentType The VLAN parent device type

StatusInfo Status information of logical device (enabled, disabled, other, unknown)

VLANName Name of the VLAN set by the user

15.3.7 Associations
Each instance is associated with an instance of IANet_VLANSetting using an instance of the class
IANet_VLANToVLANSettingAssoc.

15.3.8 Unsupported Properties
Description, Install Date, StartMode, and Status are not used.

15.3.9 Methods
None

Page 49 of 75

16 VLAN Setting Schema
16.1 VLAN Setting Schema Diagram

IANet_VLANIANet_VLANSetting

CIM_Setting

VLAN SETTING SCHEMA

IANet_VLANToVLANSettingAssoc

IANet_Setting

uint64 base
sint64 CurrentValue
sint64 DefaultValue

sint64 max
sint64 min

sint64 Scale
sint64 step

IANet_VLANSettingInt
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_VLANSettingEnum
sint64 CurrentValue
sint64 DefaultValue

string FirstLabel
string LastLabel

sint64[] PossibleValues

IANet_VLANSettingSlider
sint64 CurrentValue
sint64 DefaultValue

string[] DescriptionMap
sint64[] PossibleValues

IANet_VLANSettingMultiSelection
string CurrentValue
string DefaultValue
uint32 MaxLength

IANet_VLANSettingString

16.2 IANet_VLANToVLANSettingAssoc
16.2.1 Purpose
This class is used to group a collection of IANet_VLANSetting instances.

16.2.2 Instances
Each VLAN can have several associated IANet_VLANToVLANSettingAssoc instances.

16.2.3 Creating Instances
The user cannot create instances of IANet_VLANToVLANSettingAssoc.

16.2.4 Removing Instances
The user cannot remove instances of IANet_VLANToVLANSettingAssoc.

16.2.5 Modifying Properties
There are no user-modifiable properties for this class.

16.2.6 Associations
An IANet_VLANToVLANSettingAssoc instance will exist to associate each IANet_VLAN
(IANet_LogicalEthernetAdapter) with its setting.

16.2.7 Methods
There are no supported methods for this class.
Page 50 of 75

16.2.8 Unsupported Properties
None.

16.3 IANet_VLANSetting
16.3.1 Purpose
This abstract class is used to describe a settable property in a configuration. The class is derived from
IANet_Setting.

16.3.2 Instances
Instances of this class will exist for each setting on each VLAN.
There are several sub-classes for IANet_VLANSetting. The sub-classes correspond to the different types
and range of values that settings can take. Each sub-class corresponds to a different style of GUI that
may be used to display or change the settings.

16.3.3 Creating Instances
The user cannot create instances of IANet_VLANSetting.

16.3.4 Removing Instances
The user cannot remove instances of IANet_VLANSetting.

16.3.5 Modifying Properties
This abstract class has no modifiable properties, however, the child classes do have modifiable
properties (see sub-classes listed in this section).

16.3.6 Associations
Each IANet_VLANSetting instance is associated with an IANet_VLAN instance using an instance of
IANet_VLANToVLANSettingAssoc.

16.3.7 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

16.3.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.4 IANet_VLANSettingInt
16.4.1 Purpose
The class models a setting that takes an integer value. There are several IANet setting classes used to
model integers. The differences between these classes concerns how the integer is displayed and
modified by the GUI, and how validation is done by the Provider. For IANet_VLANSettingInt, it is
expected that the GUI will display an edit box with a spin control.

16.4.2 Instances
An instance of this class exists for each setting that should be displayed as an integer edit box.

16.4.3 Creating Instances
The user cannot create instances of this class.

16.4.4 Removing Instances
The user cannot remove instances of this class.

Page 51 of 75

16.4.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this
property by using IWbemClassObject::Put() to change the value, then call
“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max
 CurrentValue >= min

 (CurrentValue – min) is a multiple of step
Where max, min, CurrentValue and step are all properties of IANet_SettingInt.

16.4.6 Local Properties
This class implements the following local properties:

Property Description
base Root from which the integer value may take values. (example; decimal = base 10)

CurrentValue The actual value of the integer setting

DefaultValue The initial value of the integer setting

max The maximum value that the setting can have

min The minimum value that the setting can have

Scale Unit to measure value of setting

step The granularity of the integer value

16.4.7 Associations
Each IANet_VLANSettingInt instance is associated with an IANet_VLAN instance using an instance of
IANet_VLANToVLANSettingAssoc.

16.4.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.4.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

16.5 IANet_VLANSettingEnum
16.5.1 Purpose
The class models an enumeration setting value. For IANet_VLANSettingEnum, it is expected that the
GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list
combo box).

16.5.2 Instances
An instance of this class exists for each setting that will be displayed as an enum.

16.5.3 Creating Instances
The user cannot create instances of this class.

16.5.4 Removing Instances
The user cannot remove instances of this class.

Page 52 of 75

16.5.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

16.5.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

16.5.7 Associations
Each IANet_VLANSettingEnum instance is associated with an IANet_VLAN instance using an instance
of IANet_VLANToVLANSettingAssoc.

16.5.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.5.9 Methods
There are no supported methods on this class. To make changes to a setting modify the required property
and call PutInstance.

16.6 IANet_VLANSettingSlider
16.6.1 Purpose
The class models a setting that specifically handles Slider settings. For IANet_VLANSettingSlider, it is
expected that the GUI will display a slider which will allow the user to choose the value in a graphical
manner – the actual value chosen need not be displayed.

16.6.2 Instances
An instance of this class exists for each setting that will be displayed as a slider.

16.6.3 Creating Instances
The user cannot create instances of this class.

16.6.4 Removing Instances
The user cannot remove instances of this class.

16.6.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 53 of 75

16.6.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

FirstLabel The label that should be displayed to the left of the slider

LastLabel The label that should be displayed to the right of the slider

PossibleValues Range of values which should be displayed with the first value on the left and last value on
the right side of the slider

16.6.7 Associations
Each IANet_VLANSettingSlider instance is associated with an IANet_VLAN instance using an instance
of IANet_VLANToVLANSettingAssoc.

16.6.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.6.9 Methods
There are no supported methods on this class. To make changes to a setting, modify the required
property and call PutInstance.

16.7 IANet_VLANSettingMultiSelection
16.7.1 Purpose
This class models a setting whereby the user can select several options from a list of options. For
IANet_VLANSettingMultiSelection, it is expected that the GUI will display multi-selection list box
which will allow the user to choose any (or no) option(s).

16.7.2 Instances
An instance of this class exists for each setting that will be displayed as a multi-selection.

16.7.3 Creating Instances
The user cannot create instances of this class.

16.7.4 Removing Instances
The user cannot remove instances of this class.

16.7.5 Modifying Properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 54 of 75

16.7.6 Local Properties
This class implements the following properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

16.7.7 Associations
Each IANet_VLANSettingMultiSelection instance is associated with an IANet_VLAN instance using an
instance of IANet_VLANToVLANSettingAssoc.

16.7.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.7.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property and call PutInstance.

16.8 IANet_VLANSettingString
16.8.1 Purpose
This class models a setting whereby the user can enter a free-form string value. For
IANet_VLANSettingString, it is expected that the GUI will display an edit box.

16.8.2 Instances
An instance of this class exists for each setting that will be displayed as an edit box.

16.8.3 Creating Instances
The user cannot create instances of this class.

16.8.4 Removing Instances
The user cannot remove instances of this class.

16.8.5 Modifying properties
The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using
Put() to change the value, then call “PutInstance()” to update the setting.

16.8.6 Local Properties
This class implements the following local properties:

Property Description
CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

MaxLength The maximum string length allowed

16.8.7 Associations
Each IANet_VLANSettingString instance is associated with an IANet_VLAN instance using an
instance of IANet_VLANToVLANSettingAssoc.

Page 55 of 75

16.8.8 Unsupported Properties
SettingID and RequiresSession are not used.

16.8.9 Methods
There are no supported methods for this class. To make changes to a setting, modify the required
property, then call PutInstance.

Page 56 of 75

17 Diagnostic Classes
17.1 Diagnostic Test Schema

Diagnostic Test Schema

CIM_DiagnosticTest

IANet_DiagSettingForTestIANet_DiagResultForTestIANetDiagTestForMSE

IANet_DiagSettingIANet_PhysicalEthernetAdapter

uint32 ClearResults ([IN], [OUT])
uint32 DiscontinueTest ([IN], [IN], [OUT])

uint32 RunTest ([IN], [IN], [OUT])

boolean Grouped
uint16 GroupId
uint16 TestId

IANet_DiagTest

uint32[] TestResultIds
uint16[] TestResultsAttr

IANet_DiagResult

17.2 IANet_DiagTest
17.2.1 Purpose
IANet_DiagTest is subclassed from CIM_DiagnosticTest. The class provides a generic vehicle to run
and control Diagnostic tests for an Intel PROSet for Microsoft Device Manager supported Ethernet
adapter. The superclass, CIM_DiagnosticTest, is designed to generically support the testing of any
computer hardware on a CIM enabled system. Properties of the class are descriptive in nature and the
mechanics of the testing are provided by the exposed methods.

17.2.2 Instances
Key is Name and in this provider it is the concatenation of a numeric index of the test @ the GUID of
the referenced adapter (e.g. 1@{12345678-9ABC-DEF0-1234-123456789012}). This key value is, in
one sense, redundant information, as all information to reference an adapter and test is passed as object
parameters to the RunTest and other methods. Still, the instance must be consistent with parameters to
the method or the provider will reject the command. Other properties provide other description and run
time information.

17.2.3 Creating Instances
The user cannot create instances of IANet_DiagTest.

Page 57 of 75

17.2.4 Deleting Instances
The user cannot delete instances of IANet_DiagTest.

17.2.5 Modifying Properties
There are no user-modifiable properties for this class.

17.2.6 Local Properties
This class implements the following local properties:

Property Description
Grouped Indicates whether the test are grouped under a specific category

GroupID The identification number of the group of which this test belongs

TestID The specific test identification number

17.2.7 Associations
• An instance of IANet_DiagTestForMSE associates an IANet_DiagTest with an

IANet_PhysicalEthernetAdapter.
• An instance of IANet_DiagResultForTest associates an IANet_DiagTest with an IANet_DiagResult

instance.
• An instance of IANetDiagSettingForTest associates an IANet_DiagTest with an IANet_DiagSetting.

17.2.8 Unsupported Properties
Caption, Description, InstallDate, OtherCharacteristicDescription,

17.2.9 Methods
This class supports the following methods:

uint32 RunTest(
 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [IN] CIM_DiagnosticSetting ref Setting,
 [OUT] CIM_DiagnosticResult ref Result
);

Runs a test as defined by three parameters
referencing:
SystemElement - defines the adapter, which
we are to run the test on by referring to an
instance of SystemElement, which will always
be the subclass IANet_EthernetAdapter.
Setting - defines the test to be run, and the
manner in which it is run by referring to an
instance of CIM_DiagnosticSetting, which will
always be the subclass IANet_DiagSetting.
Result - defines an instance of the class
CIM_DiagnosticResult, which will always be
the class IANet_DiagResult.

uint32 DiscontinueTest(
 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [IN] CIM_DiagnosticResult ref Result,
 [OUT] Boolean TestingStopped
);

Attempts to stop a diagnostic test in progress
as defined by two parameters referencing
SystemElement and Result. These parameters
function the same as RunTest. A third
parameter TestingStopped returns a
BOOLEAN value, which indicates if the
command was successful in stopping the test.

Page 58 of 75

uint32 ClearResults(
 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [OUT] String ResultsNotCleared[]
);

Clears test results using parameters:
SystemElement
ResultsNotCleared
The referenced parameter
ManagedSystemElement, combined with this
object’s object path combine to reference
instances of DiagnosticResultForMSE, which
will be deleted. Also, all references of
DiagnosticResult objects referenced by
DiagnosticResultForMSE will be deleted. Also,
all instances of DiagnosticResultForTest, which
refer to the deleted DiagnosticResult objects,
will be deleted. Finally, the string array Output
parameter ResultsNotCleared will list the keys
of the DiagnosticResults, which could not be
cleared.

17.3 IANet_DiagSetting
17.3.1 Purpose
Instances of IANet_DiagSetting provide specific run time diagnostic test directives. Directives used are
in common to all tests and are bound to the superclass CIM_DiagnosticSetting. These include properties
such as ReportSoftErrors and HaltOnError. There are no additional properties added to the subclass
IANet_DiagSetting.

17.3.2 Creating Instances
The user cannot create instances of this class.

17.3.3 Deleting Instances
The user cannot delete instances of this class.

17.3.4 Modifying properties
UpdateInstanceAsync is implemented and can be used to set test parameters to HaltOnError,
ReportSoftErrors, ReportStatusMessages, QuickMode, TestWarningLevel, and PercentOfTestCoverage.

17.3.5 Associations
An instance of IANetDiagSettingForTest associates an IANet_DiagTest with an IANet_DiagSetting.

17.3.6 Unsupported properties
The following properties are not supported by NCS2:
Caption, Description

17.3.7 Methods
None

17.4 IANet_DiagResult
17.4.1 Purpose
Instances of IANet_DiagResult display result data for a particular test run on a particular Adapter.
Instances of this class correspond identically to instances of IANet_DiagTest and IANet_DiagSetting.

Page 59 of 75

17.4.2 Instances
Instances of IANet_DiagResult correspond to results of a particular test run on a specific adapter. The
format for the key is the same as IANet_DiagTest and IANet_DiagSetting. The instance is able to store
any arbitrary test results as any data, which does not fit the defined properties, can be placed into the
TestResults Array property. Any time a new test is run on an adapter, the new instance overwrites the
existing instance of test results corresponding to that adapter and test combination.

17.4.3 Creating Instances
The user cannot create instances of this class

17.4.4 Deleting Instances
The user cannot delete instances of this class

17.4.5 Modifying Properties
The user cannot modify instances of this class

17.4.6 Local Properties
This class implements the following local properties:

Property Description
TestResultIds Indicates the result string ID’s

TestResultsAttr The type of the result string

17.4.7 Associations
• An instance of IANet_DiagResultForTest associates an IANet_DiagTest with an IANet_DiagResult

instance.
• An instance of IANet_DiagResultForMSE associates an IANet_PhysicalEthernetAdapter with an

IANet_DiagResult instance.

17.4.8 Unsupported Properties
The following properties are not supported by NCS2:
EstimatedTimeOfPerforming OtherStateDescription, HaltOnError, ReportSoftErrors, and
TestWarningLevel

17.4.9 Methods
None

Page 60 of 75

18 Getting the Current Configuration
The client does not need to get a client handle to read the current configuration. Clients can use a NULL
context, however, any error messages will be returned in the default language for the managed machine.
In the following table, items enclosed in { } are object paths. These paths are assumed to have been
obtained from previous WQL queries. The client should never need to construct an object path without
doing a query. The __PATH attribute of every object contains the object path for that object.
In all the following use cases, the methods IWbemServices::ExecQuery or
IWbemServices::ExecQueryAsync are used to execute WQL queries.

18.1 Getting the Physical Adapters
The main class for the adapters is IANet_PhysicalEthernetAdapter. This class is used for both physical
and virtual adapters, and the client needs to know how to distinguish between them.

Task WQL Query Result Class Comment
Enumerate
all adapters

SELECT * FROM
IANet_EthernetAdapter

IANet_EthernetAdapter Returns all
IANet_EthernetAdapters. This is
equivalent to
IWbemServices::CreateInstanceEn
umAsync.

Determine if
adapter is
virtual

ASSOCIATORS OF {adapter
path}
 WHERE AssocClass =
IANet_NetworkVirtualAdapter

IANet_TeamOfAdapters If the query results in no classes
then the adapter is a real adapter.

18.2 Getting the Team Configuration
The main classes in the teaming schema are IANet_LogicalEthernetAdapter, IANet_TeamOfAdapters,
IANet_NetworkVirtualAdapter and IANet_TeamedMemberAdapter.
The association class IANet_NetworkVirtualAdapter contains no useful data – clients are really only
interested in the endpoints of this association. IANet_TeamedMemberAdapter does contain useful data
about how the member adapter is used within the team.

Task WQL Queries Result Class Comments
Enumerate
all teams

SELECT * FROM
IANet_TeamOfAdap
ters

IANet_TeamOfAdapters There is one instance of
IANet_TeamOfAdapters for each team.
This is equivalent to
IWbemServices::CreateInstanceEnumAsy
nc.

Get the
virtual
adapter for a
team

ASSOCIATORS OF
{IANet_TeamOfAda
pters path} WHERE
AssocClass =
IANet_NetworkVirtu
alAdapter

IANet_LogicalEthernetAdapt
er

Returns only the adapter object for the
virtual adapter in the team. This adapter
will not exist if the team has been created
but Apply has not been called. (see below
on updating the configuration).

Enumerate
the team’s
member
adapters

ASSOCIATORS OF
{IANet_TeamOfAda
pters path} WHERE
AssocClass =
IANet_TeamedMem
berAdapter

IANet_PhysicalEthernetAdap
ter

Returns the adapters which are in the
team, but does not describe what role the
adapter plays.

Page 61 of 75

Task WQL Queries Result Class Comments
Determine
an adapter’s
role in a
team

REFERENCES OF
{IANet_PhysicalEth
ernetAdapter path}
WHERE
ResultClass =
IANet_TeamedMem
berAdapter

IANet_TeamedMemberAdapt
er

The class contains information about how
the member adapter relates to the team
and its current status within the team.

18.3 Getting the VLAN configuration
Each adapter that supports VLANs has an IANet_802dot1QVLANService associated with it, using the
association class IANet_Device802do1QVVLANServiceImplementation. If an adapter does not have an
instance of this class associated with it, then it does not support VLANs.
Each VLAN is represented by an instance of IANet_VLAN. The VLAN is not directly associated with
the adapter – it is associated with the IANet_802dot1QVLANService for the adapter.
The association class IANet_VLANFor is used to associate each VLAN instance with the correct
IANet_802dot1QVLANService. This class contains no useful data for the user.

Task WQL Queries Result Class Comments
Get the
802.1q
VLAN
service
object
associated
with an
adapter

ASSOCIATORS OF
{IANet_EthernetAdapter path}
WHERE ResultClass =
IANet_802dot1QVLANService

IANet_802dot1QVLANS
ervice

Returns one or no
object(s).

Get the
VLANs on
an adapter

ASSOCIATORS OF
{IANet_802dot1QVLANService
path} WHERE ResultClass =
IANet_VLAN

IANet_VLAN This can return no
objects if there are
no VLANs installed.

18.4 Getting the Boot Agent Information
Each adapter that can support a boot agent in flash ROM will have an IANet_BootAgent instance
associated with it using the IANet_DeviceBootServiceImplementation association class.

Task WQL Queries Result Class Comments
Get the
Boot Agent
associated
with an
adapter

ASSOCIATORS OF {path of
IANet_EthernetAdapter} WHERE
ResultClass = IANet_BootAgent

IANet_BootAgent The following read
only properties
provide information
on the boot ROM
image for this
adapter:
InvalidImageSignat
ure, Version,
UpdateAvailable,
FlashImageType

Page 62 of 75

19 Updating the configuration
In most cases, to update the configuration, the client application will need to get a client handle from the
IANet_NetService class and store this handle in an IWbemContext context object. Changes to the
configuration will only occur when the “Apply” method on the IANet_NetService is called.

19.1 Changing the adapter, team or VLAN settings
To change an adapter, VLAN or Team setting, the client must first get the object path of the setting that
it will change. This is best done by enumerating the settings on the object and storing the __PATH
attribute of the setting (see above).
The easiest way for the client to update a setting, is to: (1) get an instance of the setting object from
WMI, (2) modify the CurrentValue attribute (using IWbemClassObject::Put()), and (3) call
IWbemServices::PutInstance() to pass the modified instance back to the Provider. PutInstance must be
called with the flag WBEM_FLAG_UPDATE_ONLY.
 The Provider will validate the CurrentValue and return WBEM_E_FAIL if the validation failed. The
exact reason for the failure will be returned in the Description attribute of the IANet_ExtendedStatus
object.
Setting specific descriptions include:
• The integer setting value was less than the minimum allowed
• The integer setting value was greater than the maximum allowed
• The integer setting value is not one of the allowable steps
• The length of the string setting is bigger than the maximum allowed
• The setting value is not one of the allowable values
The last description is returned whenever the current value for IANet_SettingEnum,
IANet_SettingSlider or IANet_SettingMultiSelection is not one of the allowable values.
The only attribute for a setting that the client can change is CurrentValue. The Provider will ignore
changes made to any of the other values.
There are no supported methods on the setting class. To make changes to a setting modify the
CurrentValue property, then call PutInstance.

19.2 Creating a new team
To create a new team, create an instance of IANet_TeamOfAdapters (i.e., use
IWbemServices::GetObject() to get a class object for IANet_TeamOfAdapters, and then use
IWbemServices::SpawnInstance() to create an instance of this object).
Then, use IWbemClassObject::Put to set the TeamMode attribute in the instance to be the desired team
type (e.g., AFT). Finally, call IWbemServices::PutInstance() to create the team, passing the flag
WBEM_FLAG_CREATE_ONLY.
The object path for the new team is stored in the IWbemCallResultObject that is passed back to the user
when the call has completed. The method IWbemCallResult::GetResultString will get the new object
path.
If this action fails, the client should check the IANet_ExtendedStatus to get the failure reasons.

19.3 Adding an adapter to a team
To add an adapter to a team create an instance of IANet_TeamedMemberAdapter (i.e., use
IWbemServices::GetObject() to get a class object for IANet_TeamedMemberAdapter, and then use
IWbemServices::SpawnInstance() to create an instance of this object).
Page 63 of 75

The following properties in the object must be set using IWbemClassObject::Put() :
• GroupComponent must be set to be the full object path of the IANet_TeamOfAdapters to which the

adapter is to be added;
• PartComponent must be set to be the full object path of the IANet_EthernetAdapter that is to be

added to the team.
The following properties may optionally be set:
• can be used to set the priority for the adapter in the team.
Finally, call IWbemServices::PutInstance() to add the adapter to the team, passing the flag
WBEM_FLAG_CREATE_ONLY.
If this action fails, check IANet_ExtendedStatus for the error code.

19.4 Removing an adapter from a team
To remove an adapter from a team, delete the IANet_TeamedMemberAdapter instance that associates
the adapter to the team using IWbemServices::DeleteInstance()
If this action fails, check IANet_ExtendedStatus for the error code.

19.5 Deleting a team
To delete a team, delete the IANet_TeamOfAdapters instance using IWbemServices::DeleteInstance()
If this action fails, check IANet_ExtendedStatus to get the error code.

19.6 Changing the mode of a team
To change the mode of a team, get the instance of IANet_TeamOfAdapters for the team (e.g., use
IWbemServices::GetObject using the object path of the team).
Then, use IWbemClassObject::Put to change the TeamMode attribute for the team. Finally, call
IWbemClassObject:: PutInstance to tell the Provider to update the team mode, passing the flag
WBEM_FLAG_UPDATE_ONLY.
If this action fails, check IANet_ExtendedStatus to get the error code.

19.7 Changing an adapter’s priority within a team
To change the priority of an adapter the client should first get the instance of
IANet_TeamedMemberAdapter for the adapter. (e.g. use IWbemServices::GetObject using the object
path).
The client can then use IWbemClassObject::Put to change the AdapterFunction attribute for the adapter.
Finally the client needs to call IWbemClassObject:: PutInstance to tell the Provider to update adapter’s
priority.
If this action fails the client should check the IANet_ExtendedStatus for the error code.

19.8 Uninstalling an adapter
To uninstall an adapter, call IWbemServices::DeleteInstance passing the object path of the adapter to
uninstall.

19.9 Creating a VLAN
To create a VLAN, call the CreateVLAN method on the IANet_802dot1QVLANService for the adapter
to which the VLAN is to be added. The following arguments must be passed to the method:
• VLANNumber the number of the VLAN. (Range 1- 4094)
• Name a user definable name to identify the VLAN.
The function will return the object path of the newly created VLAN in the out parameter VLANpath.

Page 64 of 75

If this action fails, check IANet_ExtendedStatus for the error code.

19.10 Changing the Properties of a VLAN
The client can change the VLANNumber and VLANName properties for a VLAN. To change the
priority of an adapter, first get the instance of IANet_VLAN for the adapter (e.g. use
IWbemServices::GetObject using the object path).
Then, change VLANNumber or VLANName to the desired values. . Finally, call IWbemClassObject::
PutInstance to tell the Provider to update the properties, passing the flag
WBEM_FLAG_UPDATE_ONLY.
If this action fails, check the IANet_ExtendedStatus for the error code.

19.11 Deleting a VLAN
To delete a VLAN, call IWbemServices::DeleteInstance passing the object path of the VLAN to delete.

19.12 Updating the Boot Agent
The client can update the Boot Agent Image by using methods calls. To read/write flash image, first get
the instance of IANet_BootAgent for the adapter (e.g., use IWbemServices::GetObject using the object
path).
Then, execute ReadFlash() to read the existing flash boot ROM image or ProgramFlash() to update the
flash boot ROM image.
If this action fails, check the IANet_ExtendedStatus for the error code.

Task WMI methods Result Comments
Update or
Insert a
boot ROM
image for
the adapter

uint32 ProgramFlash(
 [IN,
 ValueMap {"0","1"} ,
 Values {"Check Version",
"Write Flash"}: Amended
]
 uint32 Action,
 [IN]
 uint8
NewFlashData[],
 [OUT]
 uint32
FlashRetCode
);

If “Check Version” action
is specified, this method
will return with a warning
message, if boot ROM
image being updated as
in NewFlashData[] is
older than one already
present on NIC.

If “Write” action is
specified, this updates
the FLASH ROM on the
NIC with
NewFlashData[].

This method is
used to update the
Flash ROM on the
NIC. This will cause
the NIC to stop
communicating with
the network while
the flash is
updated.

Read boot
ROM
image

uint32 ReadFlash([OUT] uint8
FlashData[]);

FlashData[] contains the
Flash ROM image on
the NIC

This method reads
the Flash ROM on
the NIC which can
be saved into a file.

19.13 Executing methods in IANet_DiagTest
Here is the RunTest method, from the MOF file:
 uint32 RunTest([IN] CIM_ManagedSystemElement ref SystemElement,
 [IN] CIM_DiagnosticSetting ref Setting,
 [OUT] CIM_DiagnosticResult ref Result);

Page 65 of 75

The first two parameters are IN parameters. You must get the object path of both objects referenced.
You must also get the object path of the IANet_DiagTest object, which is exporting the RunTest object.
From the main WBEM test dialog box, click “Connect”.
Enter the appropriate Server\Namespace. Namespaces IntelNCS2 and CimV2 are supported.
Click the “Enum Instances” button of WBEM test and enter “IANet_DiagTest”
Double click the desired instance of IANet_DiagTest. The name will be in the form
X@[AdapterGUID}, where X is the test name and AdapterGUID will be the Adapter Name, same as the
Name key of the IANet_EthernetAdapter.
The following is an example of the object path retrieved:
\\MYCOMPUTER\root\Cimv2:IANet_DiagTest.Name="1@{4A0CDABE-F6C3-45D0-B60D-
F6E7BAFA2C2C}"
Save the object path.
Click the “Enum Instances” button of WBEM test and enter “IANet_EthernetAdapter”
Double click on the desired adapter, to be tested.
Following is an example of the object path retrieved.
\\MYCOMPUTER\root\cimv2:IANet_EthernetAdapter.DeviceID="{4A0CDABE-F6C3-45D0-B60D-
F6E7BAFA2C2C}"
Save the object path.
Click the “Enum Instances” button of WBEM test and enter “IANet_DiagSetting”
Double click on the setting which represents the desired adapter/test combination.
Following is an example of the object path retrieved:
\\MYCOMPUTER\root\cimv2:IANet_DiagSetting.SettingID="1@{4A0CDABE-F6C3-45D0-B60D-
F6E7BAFA2C2C}"
Save the object path.
From the main WBEM test dialog box, click “Execute Method”
Paste the IANet_DiagTest object path into the dialog box. Click OK
Select the desired test in the drop down box under method.
Click the “Edit In Parameters” button.
For RunTest, Setting and SystemElement are the in parameters, paste the previously saved Setting and
Adapter object paths. Close.
Click the execute button.
Enumerate the IANet_DiagResult class, in the same manner as the In parameters were.
Examine the selected result object as needed.

Page 66 of 75

20 Summary of CIM classes
20.1.1 IANet_802dot1QVLANService
Can the user create? No
Can the user delete? No
Implemented Methods: CreateVLAN
Settable Properties: None
Unsupported Properties: Description, Install Date, Started, StartMode, Status
Instance Count: One instance for each team or adapter that supports VLANs
Related Association Classes: IANet_Device802dot1QVLANServiceImplementation, IANet_VLANFor

20.1.2 IANet_BootAgent
Can the user create? No
Can the user delete? No
Implemented Methods: ProgramFlash, ReadFlash
Settable Properties: None
Unsupported Properties: Caption, Description, InstallDate, Started, StartMode, Status
Instance Count: One instance for each adapter that supports the boot agent capability.
Related Association Classes: IANet_DeviceBootServiceImplementation,

IANet_BootAgentToBootAgentSettingAssoc

20.1.3 IANet_Device802dot1QVLANServiceImplementation
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each adapter or team which supports VLANs
Related Association Classes: This class associates IANet_EthernetAdapter with

IANet_802dot1QVLANService.

20.1.4 IANet_PhysicalEthernetAdapter
Can the user create? No
Can the user delete? Yes
Implemented Methods: AdvancedCableTest, ExpressTeam, GetExpressTeamInfo,

GetPowerUsageOptions, IdentifyAdapter, SetPowerUsageOptions, TestCable, TestLinkSpeed
Settable Properties: None
Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,
DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,
ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,
FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors,
IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,
LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,

Page 67 of 75

NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,
OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a
method), PowerManagementSupported (this is exposed as a method), PowerOnHours,
ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors,
TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,
TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,
TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: One for each Intel PROSet supported installed adapter.
Related Association Classes: IANet_Device802dot1QVLANServiceImplementation,

IANet_DeviceBootServiceImplementation, IANet_DiagTestForMSE, IANet_DiagResultForMSE,
IANet_AdapterToSettingAssoc, IANet_TeamedMemberAdapter

20.1.5 IANet_NetService
Can the user create? No
Can the user delete? No
Implemented Methods: BeginApply,Apply
Settable Properties: None
Unsupported Properties: Caption, Description, Install Date, Started, Start Mode, Status
Instance Count: Exactly one.
Related Association Classes: None

20.1.6 IANet_EthernetAdapter
Can the user create? No
Can the user delete? Yes
Implemented Methods: None
Settable Properties: None
Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,
DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,
ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,
FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors, OtherIdentifyingInfo,
IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,
LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,
NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,
OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a
method), PowerManagementSupported (this is exposed as a method), PowerOnHours,
ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors, SymbolErrors,
TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,
TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,
TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: This is an abstract class.
Related Association Classes: IANet_Device802dot1QVLANServiceImplementation.

20.1.7 IANet_LogicalEthernetAdapter
Can the user create? No
Can the user delete? Yes
Implemented Methods: None
Page 68 of 75

Settable Properties: None
Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,
DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,
ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,
FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors, OtherIdentifyingInfo,
IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,
LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,
NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,
OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a
method), PowerManagementSupported (this is exposed as a method), PowerOnHours,
ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors, SymbolErrors,
TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,
TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,
TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: One for each team.
Related Association Classes: IANet_NetworkVirtualAdapter., IANet_TeamToTeamSettingAssoc.

20.1.8 IANet_NetworkVirtualAdapter
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each team.
Related Association Classes: This class associates IANet_TeamOfAdapters with an

IANet_LogicalEthernetAdapter.

20.1.9 IANet_Setting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: SettingID, RequiresSession
Instance Count: This is an abstract class.
Related Association Classes: None

20.1.10 IANet_AdapterSetting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: SettingID, RequiresSession
Instance Count: This is an abstract class.
Related Association Classes: IANet_AdapterToSettingAssoc

Page 69 of 75

20.1.11 IANet_AdapterSettingInt
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each integer setting
Related Association Classes: IANet_AdapterToSettingAssoc

20.1.12 IANet_AdapterSettingMultiSelection
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettngID
Instance Count: One instance for each multi-selection setting
Related Association Classes: IANet_AdapterToSettingAssoc

20.1.13 IANet_AdapterSettingEnum
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each enum setting
Related Association Classes: IANet_AdapterToSettingAssoc

20.1.14 IANet_AdapterSettingSlider
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each slider setting
Related Association Classes: IANet_AdapterToSettingAssoc

20.1.15 IANet_AdapterSettingString
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each string setting
Related Association Classes: IANet_AdapterToSettingAssoc
Page 70 of 75

20.1.16 IANet_AdapterToSettingAssoc
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each Aadapter setting
Related Association Classes: This class associates IANet_AdapterSetting with

IANet_PhysicalEthernetAdapter.

20.1.17 IANet_TeamSetting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: SettingID, RequiresSession
Instance Count: This is an abstract class.
Related Association Classes: None

20.1.18 IANet_TeamSettingInt
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each integer setting
Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.19 IANet_TeamSettingEnum
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each enum setting
Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.20 IANet_TeamSettingMultiSelection
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettngID
Instance Count: One instance for each multi-selection setting

Page 71 of 75

Related Association Classes: IANet_ TeamToTeamSettingAssoc

20.1.21 IANet_TeamSettingSlider
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each slider setting
Related Association Classes: IANet_ TeamToTeamSettingAssoc

20.1.22 IANet_TeamSettingString
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each string setting
Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.23 IANet_ TeamToTeamSettingAssoc
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each Team setting
Related Association Classes: This class associates IANet_TeamSetting with

IANet_LogicalEthernetAdapter.

20.1.24 IANet_VLANSetting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: SettingID, RequiresSession
Instance Count: This is an abstract class.
Related Association Classes: None

20.1.25 IANet_VLANSettingInt
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Page 72 of 75

Instance Count: One instance for each integer setting
Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.26 IANet_VLANSettingEnum
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each enum setting
Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.27 IANet_VLANSettingMultiSelection
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettngID
Instance Count: One instance for each multi-selection setting
Related Association Classes: IANet_ VLANToVLANSettingAssoc

20.1.28 IANet_VLANSettingSlider
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each slider setting
Related Association Classes: IANet_ VLANToVLANSettingAssoc

20.1.29 IANet_VLANSettingString
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each string setting
Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.30 IANet_ VLANToVLANSettingAssoc
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None

Page 73 of 75

Unsupported Properties: None
Instance Count: One instance for each VLAN setting
Related Association Classes: This class associates IANet_VLANSetting with IANet_VLAN.

20.1.31 IANet_BootAgentSetting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: SettingID, RequiresSession
Instance Count: This is an abstract class.
Related Association Classes: None

20.1.32 IANet_BootAgentSettingEnum
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: CurrentValue
Unsupported Properties: SettingID, RequiresSession
Instance Count: One instance for each enum setting
Related Association Classes: IANet_BootAgentToBootAgentSettingAssoc

20.1.33 IANet_BootAgentToBootAgentSettingAssoc
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each Boot agent setting
Related Association Classes: This class associates IANet_BootAgentSetting with IANet_BootAgent.

20.1.34 IANet_TeamedMemberAdapter
Can the user create? Yes
Can the user delete? Yes
Implemented Methods: None
Settable Properties: AdapterFunction
Unsupported Properties: PrimaryAdapter, ScopeOfBalancing
Instance Count: One instance for every adapter which is in a team
Related Association Classes: This class associates IANet_TeamOfAdapters with an

IANet_PhysicalEthernetAdapter.

20.1.35 IANet_TeamOfAdapters
Can the user create? Yes
Can the user delete? Yes

Page 74 of 75

Implemented Methods: TestSwitchConfiguration, GetBestTeamMode, RenameTeam, CreateTeam,
ValidateAddAdapters, ValidateSetting

Settable Properties: TeamingMode
Unsupported Properties: Install Date, Status
Instance Count: One instance for each team
Related Association Classes: IANet_NetworkVirtualAdapter, IANet_TeamedMemberAdapter

20.1.36 IANet_VLAN
Can the user create? No
Can the user delete? Yes
Implemented Methods: None
Settable Properties: VLANNumber, Caption
Unsupported Properties: Description, Install Date, StartMode, Status
Instance Count: One instance for each VLAN
Related Association Classes: IANet_VLANFor, IANet_VLANSetting

20.1.37 IANet_VLANFor
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: None
Instance Count: One instance for each VLAN
Related Association Classes: This class associates IANet_VLAN with IANet_802dot1QVLANService.

20.1.38 IANet_DiagTest
Can the user create? No
Can the user delete? No
Implemented Methods: RunTest, DiscontinueTest, ClearResults
Settable Properties: None
Unsupported Properties: Caption, Description, InstallDate, OtherCharacteristicDescription
Instance Count: One for each Adapter/test combination
Related Association Classes: IANet_DiagTestForMSE, IANet_DiagResultForTest,

IANet_DiagSettingForTest

20.1.39 IANet_DiagSetting
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: HaltOnError, ReportSoftErrors, ReportStatusMessages, QuickMode,

PercentOfTestCoverage, TestWarningLevel,
Unsupported Properties: Caption, Description
Instance Count: One for each Adapter/test combination
Related Association Classes: IANet_DiagSettingForTest

Page 75 of 75

20.1.40 IANet_DiagResult
Can the user create? No
Can the user delete? No
Implemented Methods: None
Settable Properties: None
Unsupported Properties: EstimatedTimeOfPerforming, HaltOnError, OtherStateDescription,

ReportSoftErrors, TestWarningLevel
Instance Count: One for each Adapter/test combination
Related Association Classes: IANet_DiagResultForTest, IANet_DiagResultForMSE

Page 76 of 75

	Legal Notices and Disclaimers
	Table of Contents
	1 Introduction
	1.1 Scope
	1.2 Related Documents
	2 WMI
	2.1 Common Information Model (CIM Schema)

	3 Main Features
	3.1 Adapter
	3.2 Team
	3.3 VLAN
	3.4 Diagnostics

	4 Installed Files
	4.1 Executables
	4.2 MOF Files
	4.3 MOF Files for IntelNCS2 Namespace

	5 Security
	6 Namespace and Context
	6.1 Namespace
	6.2 WBEM Context

	7 Locales and Localization
	7.1 Localized MOF files
	7.2 Class Storage
	7.3 Runtime Support

	8 Error Reporting
	8.1 IANet_ExtendedStatus
	8.2 Getting the Error Object
	8.3 Error Object Qualifiers
	8.4 Error Codes

	9 The Core Schema
	9.1 Core Schema Diagram
	9.2 IANet_NetService

	10 Ethernet Adapter Schema
	10.1 Adapter Schema Diagram
	10.2 IANet_PhysicalEthernetAdapter
	10.3 IANet_BootAgent

	11 Adapter Setting Schema
	11.1 Adapter Setting Schema Diagram
	11.2 IANet_AdapterToSettingAssoc
	11.3 IANet_AdapterSetting
	11.4 IANet_AdapterSettingInt
	11.5 IANet_AdapterSettingEnum
	11.6 IANet_AdapterSettingSlider
	11.7 IANet_AdapterSettingMultiSelection
	11.8 IANet_AdapterSettingString

	12 Boot Agent Setting Schema
	12.1 Boot Agent Setting Schema Diagram
	12.2 IANet_BootAgentToBootAgentSettingAssoc
	12.3 IANet_BootAgentSetting
	12.4 IANet_BootAgentSettingEnum

	13 Team Schema
	13.1 Team Schema Diagram
	13.2 IANet_TeamOfAdapters
	13.3 IANet_TeamedMemberAdapter
	13.4 IANet_NetworkVirtualAdapter

	14 Team Setting Schema
	14.1 Team Setting Schema Diagram
	14.2 IANet_TeamToTeamSettingAssoc
	14.3 IANet_TeamSetting
	14.4 IANet_TeamSettingInt
	14.5 IANet_TeamSettingEnum
	14.6 IANet_TeamSettingSlider
	14.7 IANet_TeamSettingMultiSelection
	14.8 IANet_TeamSettingString

	15 VLAN Schema
	15.1 VLAN Schema Diagram
	15.2 IANet_802dot1QVLANService
	15.3 IANet_VLAN

	16 VLAN Setting Schema
	16.1 VLAN Setting Schema Diagram
	16.2 IANet_VLANToVLANSettingAssoc
	16.3 IANet_VLANSetting
	16.4 IANet_VLANSettingInt
	16.5 IANet_VLANSettingEnum
	16.6 IANet_VLANSettingSlider
	16.7 IANet_VLANSettingMultiSelection
	16.8 IANet_VLANSettingString

	17 Diagnostic Classes
	17.1 Diagnostic Test Schema
	17.2 IANet_DiagTest
	17.3 IANet_DiagSetting
	17.4 IANet_DiagResult

	18 Getting the Current Configuration
	18.1 Getting the Physical Adapters
	18.2 Getting the Team Configuration
	18.3 Getting the VLAN configuration
	18.4 Getting the Boot Agent Information

	19 Updating the configuration
	19.1 Changing the adapter, team or VLAN settings
	19.2 Creating a new team
	19.3 Adding an adapter to a team
	19.4 Removing an adapter from a team
	19.5 Deleting a team
	19.6 Changing the mode of a team
	19.7 Changing an adapter’s priority within a team
	19.8 Uninstalling an adapter
	19.9 Creating a VLAN
	19.10 Changing the Properties of a VLAN
	19.11 Deleting a VLAN
	19.12 Updating the Boot Agent
	19.13 Executing methods in IANet_DiagTest

	20 Summary of CIM classes

