

Copyright©2002 – KazMax Ltd – All Rights Reserved

Author: Andrew McKay

Date: May 27th 2002

Member of

The Institute of
Analysts and Programmers

http://www.iap.org.uk

Copyright© 2002 – KazMax Ltd – All Rights Reserved

i

Table Of Contents

1 Introduction...1

1.1 Overview...1

1.2 Limitations ..1

1.3 Example Database Schema ...2

1.4 Typical ASP Script ..2

1.5 Using Class Builder ...2

1.6 Summary ..2

2 Deploying Class Builder ...5

2.1 Overview...5

2.2 Files Supplied ..5

2.3 Author Acknowledgement ...5

3 Generating The Class Script ...7

3.1 Overview...7

3.2 Example Script...11

4 Using The Script Class...15

4.1 Overview...15

4.2 Include Script File ..15

4.3 Create An Instance Of Script Class ...15

4.4 Call Methods/Properties Of Script Class.......................................15

5 Class Methods ..17

5.1 Overview...17

5.2 Quoted()...17

5.2.1 Example ...17

5.3 SqlAction() ..17

5.3.1 Example ...17

5.4 SqlQuery() ..17

5.4.1 Example ...17

5.5 Save() ..18

5.5.1 Example ...18

5.6 Load() ..18

5.6.1 Example ...18

5.7 Delete() ..18

5.7.1 Example ...18

Copyright© 2002 – KazMax Ltd – All Rights Reserved

ii

6 Class Properties..19

6.1 Overview...19

6.2 DebugMode...19

6.2.1 Example ...19

7 About The Author ...21

Table Of Figures

Figure 1: Class Builder Hierarchy ..5

Figure 2: Scripting Process...7

Figure 3: Default.asp...8

Figure 4: DefineDatabase.asp...9

Figure 5: SelectTable.asp...10

Figure 6: BuildClass.asp...11

Table Of Tables

Table 1: Example Table Schema...2

Copyright© 2002 – KazMax Ltd – All Rights Reserved

1

1 Introduction

1.1 Overview
The Class Builder Project (herein referred to as CBP) is a web application
which is designed to produce VBScript source code for performing basic
database table operations. These operations are INSERT/UPDATE, LOAD, and
DELETE.

CBP can operate as supplied with either a MySql database or Microsoft SQL
Server. However this isn’t a limitation of CBP and if you have other types of
database available you could easily modify the project to encapsulate the
functionality required for just about any database type or vendor.

The source code produced by CBP is implemented as a standard VBScript
class which can be included in any other Active Server Page (ASP). A typical
approach used by web developers is to add all of the necessary code for
performing database manipulation on each and every web page where the
database is to be interrogated or updated – a highly wasteful approach from
a design and implementation perspective, as well as leading to overwhelming
complexity for support purposes.

To give some idea of how CBP can reduce coding effort and improve web
developer productivity consider the two examples given below. Both perform
an identical operation on a database table – to insert a new row into a table.

1.2 Limitations
CBP is going to produce a very standard VBScript “template” which will
perform some basic operations on a single database table. These operations
are limited to the following:

?? Save()
?? Load()
?? Delete()

Other methods can easily be added to the script class by the developer to
perform additional functionality.

Additionally the script class will expose each of the fields of the database
table as a read-only property.

Some care may be required in naming the columns of the table to which the
class refers. For example it may be perfectly okay for a database table to
have a column called “Delete”, but as the class generated by CBP will have a
method called “Delete” there will be a conflict. The developer will need to
bear this in mind when they design their database.

Finally, in order for CBP to work successfully with a database table it is a
mandatory requirement that the leftmost (first) column of the table is an
identity column so that each record in the table can be uniquely identified. If

Copyright© 2002 – KazMax Ltd – All Rights Reserved

2

the leftmost column of the table is not an identity column CBP will not work,
and any script code produced will not be viable.

1.3 Example Database Schema
For the purposes of the example detailed in this document a database table
named tblTelDir (a simple telephone directory) is defined in the database
having the schema shown below.

Table 1: Example Table Schema

Column Name Column Type Width Description
ID Int 4 Identity column
Surname Varchar 20 Surname
Forename Varchar 20 Forename
Telephone Varchar 20 Telephone number

1.4 Typical ASP Script
A typical fragment for inserting a new record into our tblTelDir table would
look similar to the following:

<%
 sSqlStr = “INSERT INTO tblTelDir (Surname, Forename, Telephone) VALUES (“ & _
 “’” & sSurname & “’, ‘” & sForename & “’, ‘” & sTelephone & “’)”

 Set oCmd = CreateObject("ADODB.Command")
 oCmd.ActiveConnection = mConnStr
 oCmd.CommandType = adCmdText
 oCmd.CommandText = sSqlStr
 oCmd.CommandText = “SELECT @@IDENTITY”
 Set oRst = oCmd.Execute

 NewId = oRst.Fields(0)

 Set oRst = Nothing
 Set oCmd = Nothing
%>

1.5 Using Class Builder
Performing exactly the same operation using CBP the above source code can
be replaced thus:

<%
 Set oTelDir = New Class_tblTelDir
 NewId = oTelDir.Save(0, sSurname, sForename, sTelephone)
 Set oTelDir = Nothing
%>

1.6 Summary
The above examples relate to a very simple table having only four fields.
Many database tables will have rather more fields, and the user will have to
construct the necessary SQL commands and queries to match each tables
schema.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

3

This work isn’t required using CBP, and by navigating just three simple web
pages as described in this document the mechanical aspects of using
database tables can be reduced to very simple operations.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

4

Copyright© 2002 – KazMax Ltd – All Rights Reserved

5

2 Deploying Class Builder

2.1 Overview
CBP is supplied as a complete web project which can be deployed upon
Microsoft IIS4/5 web servers. The user can add this project to a sub-folder of
their own web site if required, or create a standalone web site for CBP if that
is more appropriate.

2.2 Files Supplied
A zip file containing all of the required script and other files is supplied. Use
WinZip (http://www.winzip.com) or another utility to unzip the files to a
directory on your hard disk – making sure to preserve the folder structure –
then add these files to your web project in exactly the same hierarchy as is
supplied in the zip file.

Class Builder

images

Includes

BuildClass.asp

Default.asp

DefineDatabase.asp

SelectTable.asp

StyleSheet.css

Figure 1: Class Builder Hierarchy

2.3 Author Acknowledgement
If CBP is used to help build your own web sites it would be greatly
appreciated if suitable acknowledgement were provided to the author (see
section 7 for further information). A link to the authors own web site at
http://www.kazmax.co.uk would be greatly respected, and (subject to the
target being of suitable quality) KazMax Ltd will be delighted to provide a
reciprocal link.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

6

Copyright© 2002 – KazMax Ltd – All Rights Reserved

7

3 Generating The Class Script

3.1 Overview
The process of creating a VBScript class for a table is very simple as shown
below.

Define
database

connection

Connect to database
and present list of
available tables

Select table
from list

Create VBScript
class

Figure 2: Scripting Process

Each of the steps shown in the figure above are explained below. The entire
process starts from the Default.asp web page shown below.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

8

Figure 3: Default.asp

Click on the “Create Database Class” button to proceed to the
DefineDatabase.asp web page where we collect the connection information
for our database.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

9

Figure 4: DefineDatabase.asp

DefineDatabase.asp collects the connection information for our database. For
security reasons the screenshot shown above does not show the actual
connection information, however you should know the information requested
and thus be able to enter it as indicated.

Once the server, database name, UID, password and database type have
been defined, click the “Submit” button to proceed to the SelectTable.asp
web page.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

10

Figure 5: SelectTable.asp

Providing that the connection to the database is okay SelectTable.asp will
provide a dropdown list of tables within the database. Select the table for
which a class is to be generated to proceed to generate the script.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

11

Figure 6: BuildClass.asp

BuildClass.asp produces the VBScript necessary to work with the database
table. This should work fine “out of the box”, though of course the user may
wish to add some extra functionality.

To make use of this script highlight all of the text shown in the textarea on
this page, copy it to the Windows clipboard, then paste it to a new ASP file
within the web project (the script will need to be bounded by the “<%” and
“%>” script delimiters).

3.2 Example Script
The listing below shows an example of the script which is produced by CBP.

Rem ClassBuilder - Copyright© 2002 KazMax Ltd - All Rights Reserved.
Rem http://www.kazmax.co.uk

Class Class_tblTelDir
 Rem Define variables.

 Private mConnStr
 Private mDbgMode
 Private mID ' Data type = 3
 Private mSurname ' Data type = 129
 Private mForename ' Data type = 129
 Private mTelephone ' Data type = 129

 Private Sub Class_Initialize()
 Rem Class Initialization.

 mDbgMode = False
 mConnStr = "driver=SQL Server;server=ZZZ;uid=XXX;Pwd=XXX;database=XXX"
 Call Init()
 End Sub

 Private Sub Class_Terminate()
 Rem Class Termination.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

12

 End Sub

 Private Sub Init()
 Rem Initialize variables.

 mID = 0
 mSurname = ""
 mForename = ""
 mTelephone = ""
 End Sub

 Public Function YyyyMmDd(xDate)
 Rem Returns date in form YYYY-MM-DD.

 YyyyMmDd = Right("0000" & Year(xDate), 4)
 YyyyMmDd = YyyyMmDd & Right("00" & Month(xDate), 2)
 YyyyMmDd = YyyyMmDd & Right("00" & Day(xDate), 2)
 End Function

 Public Function Quoted(xStr)
 Rem Translates single quotes to double-quotes.

 Quoted = "'" & Replace(xStr, "'", "''") & "'"
 End Function

 Public Function SqlQuery(xSql)
 Rem Performs SQL query on table. Returns recordset.

 Dim oCmd

 If mDbgMode Then
 Response.Write xSql & "
"
 End If

 Set oCmd = CreateObject("ADODB.Command")
 oCmd.ActiveConnection = mConnStr
 oCmd.CommandType = &H0001
 oCmd.CommandText = xSql
 Set SqlQuery = oCmd.Execute
 oCmd.ActiveConnection = Nothing
 Set oCmd = Nothing
 End Function

 Public Function SqlAction(xSql)
 Rem Performs SQL action on table.

 Dim oCmd

 If mDbgMode Then
 Response.Write xSql & "
"
 End If

 SqlAction = False
 Set oCmd = CreateObject("ADODB.Command")
 oCmd.ActiveConnection = mConnStr
 oCmd.CommandType = &H0001
 oCmd.CommandText = xSql
 oCmd.Execute
 oCmd.ActiveConnection = Nothing
 Set oCmd = Nothing
 SqlAction = True
 End Function

 Rem Define Properties.

 Public Property Let DebugMode(xDbg)
 mDbgMode = xDbg
 End Property

 Public Property Get ID()
 ID = mID
 End Property

 Public Property Get Surname()
 Surname = mSurname
 End Property

 Public Property Get Forename()
 Forename = mForename
 End Property

 Public Property Get Telephone()
 Telephone = mTelephone
 End Property

 Public Function Save(xID, xSurname, xForename, xTelephone)
 Rem Saves record to table.

 Dim SqlStr
 Dim oRst

 Save = 0
 Call Init()

 If CLng(xID) = CLng(0) Then
 SqlStr = "INSERT INTO tblTelDir(ID, Surname, Forename, Telephone) VALUES (" & _

xID & ", " & Quoted(xSurname) & ", " & Quoted(xForename) & ", " & _
Quoted(xTelephone) & ")"

 Call SqlAction(SqlStr)

 SqlStr = "SELECT MAX(ID) AS ID FROM tblTelDir ORDER BY ID DESC"
 Set oRst = SqlQuery(SqlStr)

Copyright© 2002 – KazMax Ltd – All Rights Reserved

13

 If Not oRst.EOF Then
 Save = Load(oRst.Fields("ID"))
 End If
 Else
 SqlStr = "UPDATE tblTelDir SET Surname = " & Quoted(xSurname) & _

", Forename = " & Quoted(xForename) & _
", Telephone = " & Quoted(xTelephone) & " WHERE ID = " & xID

 Call SqlAction(SqlStr)
 Save = Load(xID)
 End If

 Set oRst = Nothing
 End Function

 Public Function Load(xID)
 Rem Loads record from table.

 Dim SqlStr
 Dim oRst

 Load = 0
 Call Init()

 SqlStr = "SELECT * FROM tblTelDir WHERE ID = " & xID
 Set oRst = SqlQuery(SqlStr)

 If Not oRst.EOF Then
 mID = oRst.Fields("ID")
 mSurname = oRst.Fields("Surname")
 mForename = oRst.Fields("Forename")
 mTelephone = oRst.Fields("Telephone")
 Load = mID
 End If
 End Function

 Public Sub Delete(xID)
 Rem Deletes record from table.

 Dim SqlStr

 Call Load(xID)
 SqlStr = "DELETE FROM tblTelDir WHERE ID = " & xID
 Call SqlAction(SqlStr)
 End Sub
End Class

Copyright© 2002 – KazMax Ltd – All Rights Reserved

14

Copyright© 2002 – KazMax Ltd – All Rights Reserved

15

4 Using The Script Class

4.1 Overview
Having produced the script for table manipulation it is time to put it to work.
For our example project we shall name the script file as Class_tblTelDir.asp
and place this in a subfolder on our web site called “Includes”.

Using the script on an ASP web page requires the following steps to be
performed:

?? Include the script file containing our table class.
?? Create an instance of the script.
?? Call the methods and properties of the class.
?? Terminate the instance of the script class.

Each of these steps is detailed below.

4.2 Include Script File
To include the script file in our ASP web page we insert the following line of
code at the top of the web page, at line 2 of the ASP web page:

<!-- #include file=Includes/Class_tblTelDir.asp ?

4.3 Create An Instance Of Script Class
Creating an instance of the script class involves adding the following line of
code to our ASP web page:

 <%

 Set oTbl = New Class_tblTelDir

 %>

4.4 Call Methods/Properties Of Script Class
Having instantiated a copy of the script class for managing our database table
we proceed to call the methods and/or properties of the class. An example of
this would be similar to the following:

 <%

 TelId = 0

 TelId = oTbl.Save(TelId, “Smith”, “John”, “0123-445566”)

 %>

Copyright© 2002 – KazMax Ltd – All Rights Reserved

16

In this example we are saving a new telephone directory entry because we
are calling the Save() method with a value of zero for the ID. This would
cause the script class to create and execute a SQL INSERT statement.

If we had set a value for the ID as follows then the script class would create
and execute an UPDATE statement instead.

 <%

 TelId = 123

 TelId = oTbl.Save(TelId, “Smith”, “John”, “0123-445566”)

 %>

The effect of this would be to replace an existing record having an ID of 123,
rather than create a whole new record.

Copyright© 2002 – KazMax Ltd – All Rights Reserved

17

5 Class Methods

5.1 Overview
The script class generated by CBP will have the following standard methods
defined.

?? Quoted()
?? SqlAction()
?? SqlQuery()
?? Save()
?? Load()
?? Delete()

5.2 Quoted()
A standard function which replaces a single quote in a string with a double
quote. This is necessary for constructing SQL commands which are issued to
the database.

This function takes a string as a parameter, and returns the same string with
the single quotes replaced by double quotes.

5.2.1 Example
SqlStr = oTbl.Quoted(“Drink O’Murphy’s Guinness”)

5.3 SqlAction()
A standard function enabling the host web page to issue a SQL action (for
example a DELETE, INSERT or UPDATE on the database. This action does not
have to be limited to the single table that the class defines – it could be
database wide.

This function takes a string defining the SQL action which is to be performed.
There is no return value from this function.

5.3.1 Example
Call oTbl.SqlAction(“DELETE FROM tblXyz WHERE ID = 123”)

5.4 SqlQuery()
A standard function enabling the host web page to request a recordset from
the database via a SELECT statement. This request does not have to be
limited to the single table that the class defines – it could be database wide.

This function takes a string defining the query which is to be performed (e.g.
“SELECT * FROM tblXyz WHERE ID = 123”). A disconnected ADO recordset is
returned to the caller.

5.4.1 Example
Set oRst = oTbl.SqlQuery(“SELECT * FROM tblXyz WHERE ID = 123”)

Copyright© 2002 – KazMax Ltd – All Rights Reserved

18

5.5 Save()
This function will save a record to the table. This acts upon the single table to
which the class refers, and all column values must be supplied in the exact
order of the columns defined in the table.

Save() figures out whether to use an INSERT or an UPDATE according to the
first parameter which (as advised in section 1.2) must be an identity column.
If this value is zero a new record is added to the table via an INSERT
statement, otherwise an UPDATE statement is issued to the database.

On completion of the Save() operation the class will automatically perform a
Load() of the record, thus making the class properties valid.

Save() will return the identity value for the record just saved, so if this were a
new record (involving an INSERT statement) the calling process will be
informed of that new records identity without further work being required.

5.5.1 Example
TelId = 0

TelId = oTbl.Save(TelId, “Smith”, “John”, “0123-445566”)

5.6 Load()
This function loads the contents of one record into the properties of the class.
It requires a single parameter to be passed, this being the value of the
identity column to be matched (see section 1.2). If the supplied identity value
is not matched in the database (e.g. it can legally be zero) then the class
properties are initialised to default values.

Load() returns the identity value for the record just loaded. This value should
always be the value of the identity passed as a parameter, however in the
event that the identity is not found in the database table then zero will be
returned (this could be used to confirm that the requested record actually
exists in the database table).

5.6.1 Example
TelId = 123

TelId = oTbl.Load(TelId)

5.7 Delete()
This subroutine performs a delete of the requested record from the database
table. Prior to actually deleting the record the records contents will be
automatically loaded via a call to the Load() function. Therefore the calling
process could potentially make use of the deleted records contents after the
record has been deleted from the database.

5.7.1 Example
TelId = 123

Call oTbl.Delete(TelId)

Copyright© 2002 – KazMax Ltd – All Rights Reserved

19

6 Class Properties

6.1 Overview
CBP will automatically generate read-only properties which are the names of
the columns in the database table. This means that the contents of any
column of a record in the table can be used by issuing a call to the Load()
method, after which the properties will be valid.

One other “special” property is a write-only property, this being DebugMode
as explained below.

6.2 DebugMode
During development it isn’t unusual for SQL scripting errors to cause
problems, and these can be tricky to track down.

The database class exposes a write-only property called DebugMode. Setting
this to True will cause any SQL issued by the class to be written verbatim to
the host web page, immediately before that SQL is actually executed. The
results of this will not be pretty, but it can be a lifesaver on a web
development project.

6.2.1 Example
oTbl.DebugMode = True

Copyright© 2002 – KazMax Ltd – All Rights Reserved

20

Copyright© 2002 – KazMax Ltd – All Rights Reserved

21

7 About The Author
Andrew McKay is based in the United Kingdom and has over 25 years direct
experience within the IT industry in various roles. He is a full member of the
Institute of Analysts and Programmers (http://www.iap.org.uk).

After leaving school Andrew went on to college in Southampton, England, to
gain his OND in Engineering followed by an HNC in Electronics. After four
years working for Mullards Semiconductors in Southampton as a hardware
engineer Andrew joined Hewlett Packard as a field-based customer engineer.
In those days of the late 1970’s and early 1980’s HP had a desktop computer
division which was eventually swallowed up into the computer division which
continues to exist today. Andrew was to become one of the primary UK
technical support personnel for the now obsolete HP1000 range of systems,
many people will still remember with affection the HP1000 M/E/F series.

In 1986 Andrew changed from a hardware focussed career to an applications
support role, looking after HP’s Factory Automation products. This role
involved pre-sales and support, designing and delivering customer training
courses, and occasional attendance and stand duty at trade exhibitions at
Earls Court, Olympia and the NEC.

In 1990 HP took a corporate decision to withdraw from offering software
solutions to focussing their activities as a hardware vendor. After a short
secondment to the business administration team where Andrew revolutionised
reporting of consultancy revenue streams throughout HP Europe he moved on
to join the Integrated Systems Division in Birmingham, UK, where he worked
as part of a small project team continuing the development of the Rover
TestBook product. This was a ruggedised PC with a touchscreen interface
which can today be found in all Rover and Land Rover dealerships worldwide.

Andrew started his own consultancy company, KazMax Ltd, in 1997 since
when he has focussed on delivering web based solutions, with particular
emphasis on middle-tier component (MTS and COM+) and back end database
design and development. KazMax Ltd offer web design and hosting for other
small businesses and maintain web sites on behalf of other clients.

As a life member of the Association of Shareware Professionals Andrew
continues to offer try-before-you-buy software that he has written to the
world community. His KazPlan product (http://www.kazplan.com) is a
resource planning and conference scheduling solution used all around the
world. Available in two compatible versions for single user and corporate
implementation, KazPlan utilises a Microsoft SQL Server database to host the
functionality of supporting up to an unlimited number of users.

Andrew is available to undertake bespoke assignments for other organisations
can be contacted via his company web site which can be found on the
Internet at http://www.kazmax.co.uk.

